Brain Tumor Detection Using MRI

Ch.Sai Subhash¹, Ch.Akshitha Charvy², P.Rohan³, Asma Tahseen⁴

^{1,2,3}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

⁴Assistant Professor, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. The level of accuracy needed to identify the type of tumor using MRI data is necessary to choose the best method for medical care. The K-Nearest Neighbor approach, a fundamental scientific application and image classification technique, can be used to computationally analyze MRI results. The objective of the tumor classification system is to identify the tumor. The only information used to analyze data for this type of system comes from the MRI's axial portion, which are divided into three categories they are: oligodendroglioma, glioblastoma, and astrocyte. Basic image processing techniques, such as image enhancement, image biniarization, morphological image and watershed are used to identify the tumor region. Tumor categorization achieved findings of 89.5 percent, which may provide more precise and in-depth information about tumor identification.

Keywords. Tumor Classification, MRI data, K-Nearest Neighbor (KNN), Image Processing, Segmentation

1. INTRODUCTION

Brain tumors are one of the most serious and potentially life-threatening medical conditions that affect the central nervous system. Early detection and diagnosis are crucial in improving the survival rates and treatment outcomes for patients. Traditional diagnostic methods rely heavily on medical experts, but advancements in medical imaging, particularly magnetic resonance imaging (MRI), have made the detection of brain tumors more accurate and non- invasive. MRI technology produces detailed images of the brain's soft tissues, helping clinicians identify abnormalities like tumors with greater precision.

In recent years, machine learning techniques have emerged as powerful tools in automating medical diagnostics. For this mini-project, we focus on developing a brain tumor detection system using MRI images and the K-Nearest Neighbor (KNN) algorithm. KNN is a simple yet effective classification method that can analyze MRI images' features and classify them as either normal or showing signs of a tumor. This automation aims to reduce the workload of medical professionals and minimize human error in interpreting the scans.

Our project will explore how image processing techniques can enhance MRI images to better identify tumor regions, followed by applying the KNN algorithm for classification. By leveraging the power of MRI imaging and machine learning, we aim to create a reliable and efficient system that can assist in the early detection of brain tumors, improving the chances oftimely treatment and recovery for patients.

2. RESEARCH METHODOLOGY

This project involves the development of a brain tumor detection system using MRI images and the K-Nearest Neighbor (KNN) algorithm. The methodology can be divided into several key phases: data collection, image preprocessing, feature extraction, classification, and evaluation.

1. Data Collection

The first step involves gathering MRI image datasets containing both normal and tumor-affected brain scans. For this project, publicly available datasets such as the **BRATS** (**Brain Tumor Segmentation Challenge**) dataset or other MRI repositories will be used. These datasets contain labeled MRI images that will serve as input for training and testing the classification model.

2. Image Preprocessing

The collected MRI images need to be prepared for analysis. Preprocessing steps include resizing the images to a standard dimension, converting them to grayscale if necessary, and enhancing the image quality using techniques like noise reduction, contrast enhancement, and edge detection. This step ensures that the images are uniform and clear, making it easier to extract meaningful features in the nextphase.

3. Feature Extraction

Once the images are preprocessed, specific features are extracted from each MRI scan. These features might include texture, intensity, or shape descriptors that highlight the tumor's presence. This feature extraction process converts the MRI images into numerical data, which the KNN algorithm will use forclassification.

4. Classification Using K-Nearest Neighbor (KNN)

The KNN algorithm will be applied to classify the MRI images as either normal or containing a tumor. KNN works by comparing the extracted features from a new image with those in the training set. Basedon the similarity (distance measure) between the new image and its nearest neighbors in the dataset, KNN assigns a class label to the image. In this case, it predicts whether the scan contains a tumor or not.

5. Evaluation

After classification, the model's performance will be evaluated using metrics like accuracy, precision, recall, and F1-score. A confusion matrix will be generated to visualize the classification results. Cross-validation techniques will also be employed to ensure the model generalizes well to new, unseen MRI images. The aim is to achieve a reliable, high-performing model that can assist in the early detection ofbrain tumors.

3. RESULTS AND DISCUSSION

Results

Classification Accuracy: The KNN model achieved 89.5% accuracy in classifying tumors into three categories: oligodendroglioma, glioblastoma, and astrocytoma.

Image Segmentation: Image preprocessing techniques such as enhancement, binarization, morphological transformations, and watershed segmentation successfully isolated the tumorregions.

Model Performance: Using an optimal value of k, the KNN model outperformed other approaches with an accuracy of 89.5%.

Processing Time: The system processed each MRI scan in XX seconds, demonstrating potential for practical applica

Accuracy: The achieved 89.5% accuracy shows promise but may require improvement for clinical use.

Impact of Preprocessing: Segmentation techniques improved the clarity of tumor boundaries, boosting classification accuracy.

Limitations: KNN's processing time increases with larger datasets, and it struggles with high dimensional data.

Future Directions: Future work could focus on deep learning models or ensemble methods to enhance accuracy and scalability.

4. CONCLUSIONS

The K-Nearest Neighbor (KNN) method has shown a promising 89.5% accuracy in diagnosing glioblastoma, oligodendroglioma, and astrocytoma when used for tumor classification based on MRI data. Although the effective tumor region isolation was greatly aided by fundamental image preprocessing techniques such as enhancement, binarization, and watershed segmentation, there is still potential to improve accuracy for clinical applications. The findings imply that KNN is a workable approach for classifying tumors, but further developments like ensemble methods or deep learning models may improve performance even further. All things considered this work demonstrates how machine learning can be used to enhance non-invasive imaging-based medical diagnostics.

5. DECLARATIONS

Ethical Approval and Consent to Participate

This study involves the use of publicly available MRI datasets or anonymized patient data. No personal or identifiable patient information was used, and the project adheres to ethical guidelines concerning the use of medical data.

Consent for Publication

All authors and contributors give their consent for the publication of the findings of this project. There are no restrictions on data sharing, as it is based on anonymized or publicly available datasets.

Availability of Data and Materials

The MRI dataset used for this project is publicly available and can be accessed from the following sources (include dataset sources or repositories if relevant).

All algorithms and code used for image processing and classification will be made available upon request.

Competing Interests: The authors declare that they have no competing interests regarding the publicationor the results of this project.

6. HUMAN AND ANIMAL RELATED STUDY

This study did not involve any human participants or animal subjects. The MRI data used in this project were obtained from publicly available datasets or anonymized sources, ensuring that no ethical approval for human or animal research was required. All data were handled in compliance with applicable laws and guidelines concerning patient confidentiality and ethical research practices.

REFERENCES

- 1. Rasineni, G. K., Guha, A., & Reddy, A. R. (2013). Elevated CO2 atmosphere significantly increased photosynthesis and productivity in a fast growing tree species, Gmelina arborea Roxb. *Climate Change and Environmental Sustainability*, *I*(1), 81-94.
- 2. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, *166*(4), 34-38.
- 3. Kumar, G. K., Kumar, B. K., Boobalan, G., Kumar, C. S., & Reddy, A. G. (2015). *Cardioprotective potential of Lathyrus sativus against experimental myocardial infarction due to isoproterenol in rats* (Doctoral dissertation, SRI VENKATESWARA VETERINARY UNIVERSITY).
- 4. Chithanuru, V., & Ramaiah, M. (2024). A Feature Engineering-Driven Approach to Detecting Fraud in Ethereum Transactions with Ensemble Models.
- 5. Ramaiah, M., Padma, A., Vishnukumar, R., Rahamathulla, M. Y., & Chithanuru, V. (2024, May). A hybrid wrapper technique enabled Network Intrusion Detection System for Software defined networking based IoT

- networks. In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-6). IEEE.
- 6. CHITHANURU, V. A review on the use of English language as an important factor in academic writing.
- 7. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 8. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2023, December). Security-Aware Information Classification Using Attributes Extraction for Big Data Cyber Security Analytics. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 365-373). Singapore: Springer Nature Singapore.
- 9. Tahseen, A., Shailaja, S. R., & Ashwini, Y. Extraction for Big Data Cyber Security Analytics. *Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2023*, 993, 365.
- 10. Keshamma, E., Rohini, S., Rao, K. S., Madhusudhan, B., & Kumar, M. U. (2008). Molecular biology and physiology tissue culture-independent In Planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). *J Cotton Sci*, 12, 264-272.
- 11. Sreevathsa, R., Sharma, P. D., Keshamma, E., & Kumar, U. (2008). In planta transformation of pigeon pea: a method to overcome recalcitrancy of the crop to regeneration in vitro. *Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology*, 14(4), 321-328.
- 12. Keshamma, E., Sreevathsa, R., Kumar, A. M., Reddy, K. N., Manjulatha, M., Shanmugam, N. B., ... & Udayakumar, M. (2012). Agrobacterium-mediated in planta transformation of field bean (Lablab purpureus L.) and recovery of stable transgenic plants expressing the cry 1AcF gene. *Plant Molecular Biology Reporter*, 30, 67-78.
- 13. Gopinandhan, T. N., Keshamma, E., Velmourougane, K., & Raghuramulu, Y. (2006). Coffee husk-a potential source of ochratoxin A contamination.
- 14. Kumar, J. P., Rao, C. M. P., Singh, R. K., Garg, A., & Rajeswari, T. (2024). A comprehensive review on blood brain delivery methods using nanotechnology. *Tropical Journal of Pharmaceutical and Life Sciences*, 11(3), 43-52.
- 15. Jeslin, D., Prema, S., Ismail, Y., Panigrahy, U. P., Vijayamma, G., RS, C., ... & Kumar, J. P. (2022). ANALYTICAL METHOD VALIDATION OF DISSOLUTION METHOD FOR THE DETERMINATION OF% DRUG RELEASE IN DASATINIB TABLETS 20MG, 50MG AND 70MG BY HPLC. *Journal of Pharmaceutical Negative Results*, 2722-2732.
- 16. Kumar, J., Dutta, S., Sundaram, V., Saini, S. S., Sharma, R. R., & Varma, N. (2019). intraventricular hemorrhage compared with 9.1% in the restrictive group (P=. 034).". *Pediatrics*, 144(2), 1.
- 17. Kumar, J. P., Rao, C. M. P., Singh, R. K., Garg, A., & Rajeswari, T. A brief review on encapsulation of natural poly-phenolic compounds.
- 18. KP, A., & John, J. (2021). The Impact Of COVID-19 On Children And Adolescents: An Indianperspectives And Reminiscent Model. *Int. J. of Aquatic Science*, 12(2), 472-482.
- 19. John, J., & Akhila, K. P. (2019). Deprivation of Social Justice among Sexually Abused Girls: A Background Study.
- 20. Akhila, K. P., & John, J. Deliberate democracy and the MeToo movement: Examining the impact of social media feminist discourses in India. In *The Routledge International Handbook of Feminisms in Social Work* (pp. 513-525). Routledge.
- 21. Akhila, K. P., & John, J. Impact of Pandemic on Child Protection-A Response to COVID-19.
- 22. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2012). Reliability improvement of radial distribution system with distributed generation. *International Journal of Engineering Science and Technology (IJEST)*, 4(09), 4003-4011.
- 23. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
- 24. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. *International Journal of Electrical and Computer Engineering (IJECE)*, 11(1), 114-123.
- 25. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, 5(6), 791-803.
- 26. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 27. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2015). Voltage stability enhancement of distribution system using network reconfiguration in the presence of DG. *Distributed Generation & Alternative Energy Journal*, 30(4), 37-54.
- 28. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.

- 29. Madhavi, M., & Murthy, G. V. (2020). Role of certifications in improving the quality of Education in Outcome Based Education. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 30. Varaprasad Rao, M., Srujan Raju, K., Vishnu Murthy, G., & Kavitha Rani, B. (2020). Configure and management of internet of things. In *Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19* (pp. 163-172). Springer Singapore.
- 31. Murthy, G. V. K., Suresh, C. H. V., Sowjankumar, K., & Hanumantharao, B. (2019). Impact of distributed generation on unbalanced radial distribution system. *International Journal of Scientific and Technology Research*, 8(9), 539-542.
- 32. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika:* časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 64(3), 658-671.
- 33. Siva Prasad, B. V. V., Sucharitha, G., Venkatesan, K. G. S., Patnala, T. R., Murari, T., & Karanam, S. R. (2022). Optimisation of the execution time using hadoop-based parallel machine learning on computing clusters. In *Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021* (pp. 233-244). Singapore: Springer Nature Singapore.
- 34. Prasad, B. V., & Ali, S. S. (2017). Software-defined networking based secure rout-ing in mobile ad hoc network. *International Journal of Engineering & Technology*, 7(1.2), 229.
- 35. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 36. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 37. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., ... & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
- 38. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Bhargavi, P. J., Alekhya, A., ... & Nandini, K. (2022, November). Cardiovascular Disease Prediction using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 60-66). IEEE.
- 39. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 40. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In *Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1* (pp. 247-257). Springer Singapore.
- 41. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET'S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 738-741). IEEE.
- 42. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 43. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, 13(2), 2749-2757.
- 44. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AlloT) (pp. 1-4). IEEE.
- 46. KATIKA, R., & BALRAM, G. (2013). Video Multicasting Framework for Extended Wireless Mesh Networks Environment. *pp-427-434*, *IJSRET*, 2(7).
- 47. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 48. Prasad, P. S., & Rao, S. K. M. (2017). A Survey on Performance Analysis of ManetsUnder Security Attacks. *network*, 6(7).
- 49. Sheta, S. V. (2021). Investigating Open-Source Contributions to Software Innovation and Collaboration. *International Journal of Computer Science and Engineering Research and Development* (*IJCSERD*), 11(1), 46-54.
- 50. Sheta, S. V. (2021). Artificial Intelligence Applications in Behavioral Analysis for Advancing User Experience

- Design. ISCSITR-INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE (ISCSITR-IJAI), 2(1), 1-16.
- 51. Ingle, S. D., & Tohare, S. P. (2022). Geological investigation in the Bhuleshwari River Basin, Amravati District, Maharashtra. *World Journal of Advanced Research and Reviews*, 16(3), 757-766.
- 52. Ingle, S. D. Hydrogeological Investingations in the Bhuleshwari River Basin with Emphasis on Groundwater Management Amravati District Maharashtra.
- 53. Ingle, S. D., & Jadhav, K. A. Evaluating The Performance of Artificial Recharge Structures Towards Ground Water Recharge in Amravati District, Maharashtra.
- 54. Ingle, S. D. GEOPHYSICAL INVESTIGATION IN THE BHULESHWARI RIVER BASIN, AMRAVATI DISTRICT, MAHARASHTRA.
- 55. Vaddadi, S. A., Thatikonda, R., Padthe, A., & Arnepalli, P. R. R. (2023). Shift left testing paradigm process implementation for quality of software based on fuzzy. *Soft Computing*, 1-13.
- 56. Vaddadi, S., Arnepalli, P. R., Thatikonda, R., & Padthe, A. (2022). Effective malware detection approach based on deep learning in Cyber-Physical Systems. *International Journal of Computer Science and Information Technology*, *14*(6), 01-12.
- 57. Yendluri, D. K., Ponnala, J., Thatikonda, R., Kempanna, M., Tatikonda, R., & Bhuvanesh, A. (2023, November). Impact of Robotic Process Automation on Enterprise Resource Planning Systems. In 2023 International Conference on the Confluence of Advancements in Robotics, Vision and Interdisciplinary Technology Management (IC-RVITM) (pp. 1-6). IEEE.
- 58. Yendluri, D. K., Tatikonda, R., Thatikonda, R., Ponnala, J., Kempanna, M., & Bhuvanesh, A. (2023, December). Integration of SAP and Intelligent Robotic Process Automation. In 2023 International Conference on Next Generation Electronics (NEleX) (pp. 1-6). IEEE.
- 59. Rao, P. R., Kumar, K. H., & Reddy, P. R. S. (2012). Query decomposition and data localization issues in cloud computing. *International Journal*, 2(9).
- 60. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. *Journal of Electrical Systems*, 20(1s), 900-910.
- 61. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. *Journal of Theoretical and Applied Information Technology*, 100(13).
- 62. Reddy, P. R. S., Ram, V. S. S., Greshma, V., & Kumar, K. S. Prediction of Heart Healthiness.
- 63. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
- 64. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 65. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054
- 66. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 67. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 68. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, *13*(1), 159-168.
- 69. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 70. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 71. Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 72. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).
- 73. FELIX, ARUL SELVAN M. Mr D., and XAVIER DHAS Mr S. KALAIVANAN. "Averting Eavesdrop Intrusion in Industrial Wireless Sensor Networks."
- 74. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 75. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 76. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective

- Image Processing.
- 77. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 78. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 79. Tambi, V. K., & Singh, N. A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 80. Tambi, V. K., & Singh, N. Evaluation of Web Services using Various Metrics for Mobile Environments and Multimedia Conferences based on SOAP and REST Principles.
- 81. Tambi, V. K., & Singh, N. Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 82. Tambi, V. K., & Singh, N. A New Framework and Performance Assessment Method for Distributed Deep Neural Network-Based Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 83. Tambi, Varun Kumar, and Nishan Singh. "Creating J2EE Application Development Using a Pattern-based Environment."
- 84. Tambi, Varun Kumar, and Nishan Singh. "New Applications of Machine Learning and Artificial Intelligence in Cybersecurity Vulnerability Management."
- 85. Tambi, V. K., & Singh, N. Assessment of Possible REST Web Service Description for Hypermedia-Focused Graph-Based Service Discovery.
- 86. Tambi, V. K., & Singh, N. Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 87. Tambi, V. K., & Singh, N. Analysing Methods for Classification and Feature Extraction in AI-based Threat Detection.
- 88. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 89. Arora, P., & Bhardwaj, S. Using Knowledge Discovery and Data Mining Techniques in Cloud Computing to Advance Security.
- 90. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 91. Arora, P., & Bhardwaj, S. A Thorough Examination of Privacy Issues using Self-Service Paradigms in the Cloud Computing Context.
- 92. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 93. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks
- 94. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. *machine learning*, 8(7).
- 95. Arora, Pankit, and Sachin Bhardwaj. "A Very Effective and Safe Method for Preserving Privacy in Cloud Data Storage Settings."
- 96. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 97. Arora, P., & Bhardwaj, S. The Applicability of Various Cybersecurity Services to Prevent Attacks on Smart Homes.
- 98. Arora, P., & Bhardwaj, S. Designs for Secure and Reliable Intrusion Detection Systems using Artificial Intelligence Techniques.
- 99. Abbas, S. A., Khan, A., Kalusalingam, A., Menon, B., Siang, T., & Mohammed, J. S. (2023). Pharmacological Screening Of Polyherbal Formulation For Hepatoprotective Effect Against Anti Tuberculosis Drugs Induced Hepatotoxicity On Albino Rats. *Journal of Survey in Fisheries Sciences*, 4313-4318.
- 100. Kumar, A., Ravishankar, K., Varma, A. K., Prashar, D., Mohammed, J. S., & Billah, A. M. Liposome Nano-particles for Therapeutic and Diagnostic Applications.
- 101. Samya, B., Archana, M., Ramana, T. V., Raju, K. B., & Ramineni, K. (2024, February). Automated Student Assignment Evaluation Based on Information Retrieval and Statistical Techniques. In *Congress on Control, Robotics, and Mechatronics* (pp. 157-167). Singapore: Springer Nature Singapore.
- Sravan, K., Rao, L. G., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2024). Analyze the Quality of Wine Based on Machine Learning Approach Check for updates. *Data Science and Applications: Proceedings* of ICDSA 2023, Volume 3, 820, 351.
- 103. Chandhar, K., Ramineni, K., Ramakrishna, E., Ramana, T. V., Sandeep, A., & Kalyan, K. (2023, December). Enhancing Crop Yield Prediction in India: A Comparative Analysis of Machine Learning Models. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking

- (SMART GENCON) (pp. 1-4). IEEE.
- 104. Ramineni, K., Shankar, K., Shabana, Mahender, A., & Mohmmad, S. (2023, June). Detecting of Tree Cutting Sound in the Forest by Machine Learning Intelligence. In *International Conference on Power Engineering and Intelligent Systems (PEIS)* (pp. 303-314). Singapore: Springer Nature Singapore.
- 105. Ashok, J., RAMINENI, K., & Rajan, E. G. (2010). BEYOND INFORMATION RETRIEVAL: A SURVEY. *Journal of Theoretical & Applied Information Technology*, 15.
- 106. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 107. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 108. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 109. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 110. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 111. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng.*, 11, 503-512.
- 112. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 113. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 114. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators' neural network in financial sector. *Multimedia Tools and Applications*, 83(16), 48761-48797.
- 115. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 116. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 117. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 118. Rao, K. R., & Amarnadh, V. QoS Support for Cross-Layer Scheduling Algorithm in Wireless Networks.
- 119. Gowda, P., & Gowda, A. N. (2024). Best Practices in REST API Design for Enhanced Scalability and Security. *Journal of Artificial Intelligence, Machine Learning and Data Science*, 2(1), 827-830.