Smart Harvesting System (Agro-Flow)

Dr.C.Dastagiriah¹, K.Chaitanya², K.Satwik Reddy³, P.Sai Kumar⁴

Assistant Professor¹, Department of Computer Science and Engineering, Anurag University, Telangana, India Student^{2,3,4}, Department of Computer Science and Engineering, Anurag University, Telangana, India

21eg105b01@anurag.edu.in, 21eg105b06@anurag.edu.in, 21eg105b15@anurag.edu.in

Abstract This research presents the development of an integrated Internet of Things (IoT)-based agricultural system that automates plant watering and monitors crop health to enhance farming efficiency and sustainability. The first component of the system is an automatic plant watering system, which leverages soil moisture sensors to monitor real-time soil conditions. When the soil moisture level falls below a predefined threshold, the system triggers an automatic irrigation process via a water pump. This system can be remotely controlled and monitored through a smartphone application or web interface, ensuring optimal water usage and preventing over-watering or under-watering. The second component, the crop health indicator, uses a combination of environmental sensors (temperature, humidity, soil pH, light intensity) and advanced imaging technologies such as multispectral cameras or drones to assess crop health. These sensors detect critical factors affecting plant growth and yield, such as disease, pest infestation, or nutrient deficiencies. The data collected from these sensors is processed in real-time and analyzed to provide actionable insights and timely alerts to farmers, enabling them to take appropriate actions to address crop stress and optimize yield. The system is designed to be user-friendly, providing farmers with easy access to critical data and control through mobile and web interfaces. The integration of these technologies aims to reduce resource consumption, enhance crop productivity, and support sustainable agricultural practices.

Keywords. IoT, automatic irrigation, crop health monitoring, soil moisture sensor, real-time data analysis.

INTRODUCTION

The integration of Internet of Things (IoT) technologies into agriculture has emerged as a promising solution to address critical challenges related to resource management, crop health, and sustainable farming practices. With the growing global population and the increasing demand for food, agriculture must become more efficient, both in terms of water usage and crop management. Traditional irrigation methods often lead to water wastage or underirrigation, resulting in suboptimal crop growth and increased operational costs. Similarly, the manual monitoring of crop health, including factors like soil moisture, temperature, and pest infestations, is labor-intensive and prone to errors. These inefficiencies highlight the need for automated systems that can monitor real-time conditions and optimize resource usage.

This research proposes the development of an IoT-based agricultural system aimed at automating irrigation and continuously monitoring crop health. The first component of the system focuses on automating irrigation based on real-time soil moisture readings, ensuring efficient water usage and preventing over- or under- watering. The second component uses IoT sensors, including environmental and multispectral imaging devices, to continuously monitor the health of crops and detect signs of disease, pest infestation, or nutrient deficiencies. By integrating these two systems into a cohesive platform, the research aims to improve farm productivity, reduce water wastage, and enable early intervention to safeguard crop health.

The importance of this research lies in its potential to address key challenges in modern agriculture. Recent studies have highlighted the inefficiencies of traditional irrigation methods and the increasing need for precision agriculture to cope with environmental and economic pressures [1], [2]. The proposed system offers a solution to these issues by combining automation and real-time monitoring. The objectives of this work are to reduce resource wastage, improve crop yields, and make farm management more efficient through the use of IoT technologies. This work contributes to the ongoing development of smart agriculture solutions by integrating key technologies for both irrigation management and crop health monitoring, offering a comprehensive and scalable solution for modern farming [3].

Page No.: 1

RESEARCH METHODOLOGY

The research methodology for the IoT-based agricultural system focuses on the development and implementation of automated irrigation and crop health monitoring systems using real-time data collection, IoT devices, and wireless communication. The methodology is divided into two main components: the design and implementation of the automated irrigation system and the crop health monitoring system.

• Automated Irrigation System Design The automated irrigation system relies on soil moisture sensors, which continuously measure the soil's moisture content. The system works by detecting the moisture levels of the soil and comparing them to predefined thresholds. When the soil moisture falls below the threshold, the system automatically activates the water pump to irrigate the plants. The water pump is controlled through a relay module connected to the NodeMCU (ESP8266) microcontroller, which sends a control signal based on the sensor data. The irrigation process is designed to be energy-efficient and water-conserving by ensuring that the system operates only when necessary.

Steps involved in the automated irrigation system:

- **Step 1: Sensor Calibration**: Soil moisture sensors are calibrated by defining a baseline moisture level for the specific soil type used in the experiment.
- **Step 2: Threshold Setting**: Predefined moisture thresholds are set based on the crop's irrigation requirements. These thresholds help determine when irrigation should be triggered.
- **Step 3: Data Collection**: The soil moisture sensor continuously monitors the moisture content of the soil and sends the data to the NodeMCU microcontroller.
- **Step 4: Relay Control**: The microcontroller processes the data from the sensor and activates the relay, which in turn triggers the water pump to irrigate the plants when the moisture level falls below the set threshold.
- Crop Health Monitoring System The crop health monitoring system uses various IoT sensors, including temperature, humidity, and light sensors, to monitor the environmental conditions that affect crop health. Additionally, multispectral imaging sensors or cameras are utilized to capture visual data for disease detection, pest monitoring, and nutrient deficiency analysis. Data from all sensors is transmitted wirelessly to the NodeMCU, which processes the information and sends it to a cloud-based platform or a mobile app for remote monitoring.

Steps involved in the crop health monitoring system:

- **Step 1: Environmental Sensors**: Temperature and humidity sensors (e.g., DHT22) are used to monitor the environmental conditions around the crops. The data from these sensors are sent to the NodeMCU for processing.
- **Step 2: Light Intensity Measurement**: A light-dependent resistor (LDR) is used to measure the amount of sunlight available to the plants. The LDR's output helps assess whether the crops are receiving sufficient light for photosynthesis.
- **Step 3: Disease Detection**: Multispectral cameras or drones equipped with imaging sensors capture high-resolution images of the crops. These images are analyzed using software to detect any anomalies or early signs of pest infestation or disease.
- **Step 4: Data Processing and Analysis:** All sensor data (moisture, temperature, humidity, light) and image data from the multispectral sensors are processed by the NodeMCU. The microcontroller evaluates the conditions and triggers alerts to the user (farmer) if any crop health issues or irrigation requirements are detected.
- Wireless Communication and Data Transmission The data from both the irrigation system and the crop health monitoring system is transmitted wirelessly using Wi-Fi, facilitated by the NodeMCU microcontroller. The NodeMCU is connected to the internet, and all collected data is sent to a cloud-based platform or smartphone app for remote monitoring. The system ensures that farmers can receive real-time updates and alerts on their mobile devices, allowing them to take immediate action when needed.

Wireless communication steps:

- **Step 1: Cloud Integration**: The NodeMCU sends the processed data from the sensors to a cloud- based server or platform (e.g., Blynk, ThingSpeak) for storage and analysis.
- **Step 2: User Interface**: The data is displayed on a mobile application or web interface, which provides the user with real-time monitoring capabilities. The user can view the soil moisture level, environmental

conditions, and receive notifications on crop health issues.

- **System Testing and Validation** Once the system is developed, it undergoes rigorous testing to ensure its functionality and reliability. The following testing phases are carried out:
 - 1. **Sensor Calibration Test**: To ensure that the sensors are providing accurate readings, calibration is performed by comparing sensor data against known standards.
 - 2. **Irrigation Trigger Test**: The system is tested by simulating different soil moisture levels and verifying that the irrigation system activates correctly when moisture falls below the set threshold.
 - 3. **Crop Health Monitoring Validation**: The crop health monitoring system is tested by assessing its ability to detect changes in environmental conditions and crop health (e.g., temperature, humidity, and pest infestation).
 - 4. **System Integration Test**: The complete IoT system, including both the irrigation and crop health monitoring components, is tested to ensure proper communication between sensors, the microcontroller, cloud platform, and mobile app.
- **Data Analysis and Performance Evaluation** The performance of the IoT-based agricultural system is evaluated based on several criteria:
 - 1. **Water Usage Efficiency**: The amount of water saved by the automated irrigation system is measured and compared to traditional irrigation methods.
 - 2. **Crop Yield**: The crop health data, including temperature, humidity, and disease detection, is analyzed to evaluate improvements in crop yield and quality.
 - 3. **System Reliability**: The reliability of the entire system is assessed through long-term testing to ensure that sensors provide accurate data and the system operates consistently over time.

LITERATURE SURVEY

Source	Journal/Conference	Focus Area	Limitations
Jalgaon et al. (2017)	International Journal of Advanced Research in Computer Science	Automated irrigation using soil moisture sensors	Limited to soil moisture; no integration with other factors like weather data
Patel et al. (2018)	International Journal of Computer Applications	Dynamic irrigation based on soil moisture and weather forecasts	Weather data may not always be accurate or available
Kumar et al. (2020)	Computers and Electronics in Agriculture	Crop health monitoring using environmental sensors and infrared cameras	Limited detection types, relies on specific plant behaviors
	Journal of Agricultural and Food Chemistry	Drone-based crop health monitoring using multispectral imaging	
Nayak et al. (2021)	International Journal of Advanced Computer Scienc and Applications	Real-time data collection and ealerts for environmental Conditions	Limited to basic sensors, lacks machine learning integration

THEORY AND CALCULATION

The integration of Internet of Things (IoT) technology into agriculture involves the application of several key theoretical principles in both automation and monitoring. These principles are grounded in sensor technology, wireless communication systems, and data analysis. This section elaborates on the theoretical foundations that support the design and implementation of the automated plant watering system and crop health indicator. The following theoretical concepts form the basis for the system's design and subsequent calculations.

Soil Moisture Sensing and Irrigation Automation

The core principle of the automated irrigation system is the measurement and management of soil moisture. Soil moisture sensors typically operate on the principle of electrical resistance or capacitance. A **resistive sensor** measures the resistance between two electrodes embedded in the soil, which correlates with the moisture content. As the moisture content increases, the resistance decreases, providing a direct measurement of soil wetness. The relationship between soil moisture and irrigation needs is modeled using a moisture threshold below which the system is triggered to initiate watering.

The calculation for triggering irrigation can be expressed as:

Irrigation Trigger = Soil Moisture < Threshold Moisture

Where:

- **Soil Moisture** is the real-time data input from the soil moisture sensor (typically an analog signal converted to a digital reading).
- Threshold Moisture is the predetermined moisture level at which the system activates irrigation.

This formula ensures that irrigation occurs only when soil moisture falls below an acceptable range, thus conserving water while ensuring the crops receive adequate hydration.

Crop Health Monitoring via Environmental Sensors

Crop health is influenced by several environmental factors, including temperature, humidity, light intensity, and soil pH. These variables are continuously monitored using sensors like the **DHT11/DHT22** for temperature and humidity, and **LDR** for light intensity. The system calculates ideal conditions for different crops, and deviations from these conditions are used to generate alerts for potential crop stress.

The health of the crop can be modeled using a simple formula combining multiple environmental factors:

 $Crop\ Health = f(Temperature, Humidity, Light, Soil\ pH)$

Where:

- Temperature, Humidity, and Light are real-time data inputs from their respective sensors.
- Soil pH is an additional factor influencing plant health, which can be measured using a pH sensor.

The system's decision-making logic evaluates the combined values of these inputs to detect abnormalities or stresses. For instance, high humidity combined with low light intensity may indicate a potential risk for fungal diseases, prompting the system to send an alert to the farmer.

Mathematical Expressions and Symbols

1. Data Communication and Remote Monitoring

Data communication in this IoT system relies on wireless protocols, mainly Wi-Fi. The **NodeMCU** microcontroller acts as the central processing unit, receiving data from various sensors and transmitting it via Wi-Fi to a cloud platform or smartphone application. The calculation of the optimal communication range is crucial for ensuring reliable data transmission.

The communication range and signal strength can be modeled using the Friis transmission equation:

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi d)^2}$$

- P_r is the received power,
- **P_t** is the transmitted power,
- **G** t and **G** r are the gains of the transmitting and receiving antennas,
- λ is the wavelength of the signal,
- **d** is the distance between the antennas.

The formula is used to estimate the strength and reliability of the signal between the NodeMCU and the mobile device or cloud server, ensuring that data is transmitted in real-time with minimal delay.

2. Relay Control and Motor Activation

The relay module in the system serves as the switch that controls the water pump. The relay is activated by the microcontroller based on the calculated soil moisture levels. The theoretical operation of the relay involves the logic gate that triggers the motor when the soil moisture value falls below the predefined threshold.

The relay control operation can be described by a Boolean equation:

When the condition is met (i.e., the soil moisture falls below the threshold), the relay is activated, completing the circuit and triggering the water pump to start.

3. Calculations for System Efficiency and Water Conservation

One of the key goals of the IoT-based system is to conserve water while maintaining optimal crop health. The system's efficiency can be evaluated based on the amount of water used per crop and compared to traditional irrigation methods. The efficiency can be calculated using the following formula:

$$Water Efficiency = \frac{Amount of Water Used}{Crop Yield}$$

By monitoring the total water usage and crop output, the system can be optimized over time, adjusting the irrigation thresholds and schedules based on real-time data.

RESULTS AND DISCUSSIONS

All the results are collected at the blynk iot application which should be installed at mobile and thee data should be collected and shown on this application. The interface shows three divisions which are

- a) Crop Health
- b) Auto Watering
- c) Graphical Data

The below image shows a mobile app interface for an IoT-based agriculture system called "IOT AGRO FLOW". The app displays real-time data on various crop health parameters:

- Temperature: Current temperature is 39.1°F.
- Humidity: Current humidity is 23%.
- Soil Moisture: Current soil moisture is 111.
- Light: Current light intensity is 32.21%.
- Rain: Current rainfall is 111.

The app also offers features like auto-watering and graphical data visualization.

The below image shows the "Auto Watering" section of the IoT AGRO FLOW app. The "Pump" button being "ON" indicates that the automatic watering system is currently active.

Here's how the soil moisture sensor works to control the water flow:

- * Soil Moisture Sensor: The system is equipped with a soil moisture sensor that is placed near the plant roots. This sensor constantly measures the moisture content of the soil.
- * Moisture Level Monitoring: The app continuously receives data from the sensor and monitors the soil moisture levels.
- * Threshold Setting: The user can set a desired moisture level threshold in the app. This threshold determines the level at which the automatic watering system should activate.
- * Automatic Watering: When the soil moisture level falls below the set threshold, the app triggers the automatic watering system. This system could be a pump or a drip irrigation system connected to the app.
- * Water Flow Control: The system then starts delivering water to the plant until the soil moisture level reaches the desired threshold. Once the threshold is reached, the water flow is automatically stopped.

By using this sensor-based system, the app ensures that the plant receives the right amount of water at the right time, preventing both overwatering and underwatering.

The below image shows a mobile app interface for an IoT-based agriculture system called "IOT AGRO FLOW". The app displays real-time data on various crop health parameters, specifically temperature, soil moisture, and rainfall over different time intervals (1 hour, 6 hours, 1 day, 1 week, 1 month, and 3 months). The app also offers features like auto-watering and graphical data visualization.


The below image shows an alert notification sent from the Blynk app to the user's phone. The alert is titled "moisture_alert" and informs the user that the soil moisture level has fallen below the set threshold.

Here's what the notification means:

Soil Moisture Level: The soil moisture sensor is monitoring the moisture content in the soil where the plant is growing.

- Threshold: The user has set a minimum moisture level threshold in the Blynk app. This threshold represents the desired level of soil moisture for the plant.
- Alert Trigger: When the soil moisture level drops below this threshold, the Blynk app sends an alert notification to the user's phone.

The notification serves as a reminder to the user that the plant needs water. The user can then take appropriate action, such as manually watering the plant or checking the automatic watering system. This feature of the Blynk app helps ensure that the plant receives adequate water and remains healthy.

FUTURE SCOPE AND IMPROVEMENTS

The current IoT-based agricultural system provides a foundation for smart farming practices, especially in automating irrigation and monitoring crop health. However, there are several areas where future improvements and expansions can be made to enhance its efficiency and scalability.

• Advanced Sensors for Precision Agriculture

One of the significant areas of improvement lies in the deployment of more advanced sensors that can monitor a broader range of environmental factors. Future systems could integrate sensors that detect nutrient levels, soil texture, and plant health via spectroscopy. These sensors could provide more granular data to ensure crops receive the right type and amount of nutrients, optimizing growth and minimizing the use of fertilizers and water.

• Integration of Machine Learning and AI

Machine learning (ML) and artificial intelligence (AI) could play a crucial role in improving the decision-making process in agriculture. The current system relies on preset thresholds and simple sensor data for triggering irrigation and crop health interventions. Future work could involve integrating ML algorithms to predict optimal irrigation schedules based on historical data, weather patterns, and soil conditions. Additionally, AI models can be used for advanced disease detection and pest management by analyzing multispectral images from drones or cameras and providing more accurate diagnostics.

• Expansion to Large-Scale Agriculture

While the current system is designed for small to medium-scale farms, it can be expanded to cater to large-scale agricultural operations. This would involve improving the system's scalability by enhancing communication protocols to handle large volumes of data, as well as expanding its ability to manage large numbers of sensors and actuators in a seamless manner. Using cloud computing and edge computing will further help manage data processing efficiently and in real-time.

• Energy Efficiency and Solar Integration

An important future development would be to integrate renewable energy sources, such as solar panels, to power the sensors and actuators, making the system more energy-efficient and sustainable. This would be particularly useful for remote farming areas where the availability of a stable electrical grid is limited. Solar-powered sensors and low-power actuators would ensure that the system remains operational in an environmentally friendly way, further promoting the sustainability of modern agriculture.

• Real-Time Data Analytics and Visualization

Future enhancements could involve more advanced data analytics platforms that can analyze real- time sensor data and provide actionable insights to farmers in a more user-friendly manner. The incorporation of advanced data visualization techniques and dashboards will allow farmers to make quicker decisions and intervene in case of any anomalies. This could include machine learning- based forecasting for crop yield predictions, disease spread, and water usage optimization.

Page No.: 8

CONCLUSION

The IoT AGRO FLOW system, as depicted in the provided images, presents a promising solution for modern agriculture. By leveraging IoT technology, it enables real-time monitoring of crucial crop health parameters and automated control of irrigation systems.

The system's ability to collect and analyze data from various sensors allows farmers to make informed decisions, optimize resource utilization, and improve crop yields. Additionally, the remote monitoring and control features offer flexibility and convenience.

However, to fully realize its potential, addressing the limitations and implementing the suggested improvements is crucial. By prioritizing sensor reliability, network connectivity, power management, user-friendliness, and security, the system can become a valuable tool for sustainable and efficient agriculture.

As technology continues to advance, further integration of AI and machine learning can unlock even greater opportunities for precision agriculture, enabling predictive analytics, automated decision-making, and optimized crop management practices.

DECLARATIONS

Study Limitations

This study on the IoT-based Agro Flow Project, which integrates automated irrigation and crop health monitoring, faces several limitations that could influence the overall outcomes. The accuracy of the system relies heavily on the performance and reliability of the sensors (soil moisture, temperature, humidity, and rain sensors). Inconsistent sensor calibration or hardware malfunctions may affect data accuracy, which in turn could result in suboptimal irrigation or inaccurate health assessments of crops. Furthermore, the system's dependency on Wi-Fi connectivity may lead to issues in rural areas where network availability is limited or unreliable. The scalability of the system to larger agricultural areas, particularly with numerous sensors distributed over wide fields, has not been fully tested. While the system is effective for small-scale setups, challenges may arise when scaling up for larger, more complex agricultural environments. Lastly, the system's performance may be influenced by extreme weather conditions, and long-term testing across different seasonal conditions was not performed. These factors need further investigation in future studies.

Acknowledgements

The authors would like to express their gratitude to Anurag University for their support and collaboration throughout the development and implementation of this IoT-based agricultural system. Special thanks to Dr.C.Dastagiriah for their valuable input and assistance with system testing and calibration. We also acknowledge the help of AU IoT Club for providing access to the necessary research facilities and technical resources. The authors wish to thank the anonymous reviewers for their insightful comments and suggestions that helped improve the manuscript.

Funding Source

The research was supported by Anurag University. This work was funded by the K.Satwik Reddy,K.chaitanya and P.Sai Kumar which provided financial support for the purchase of necessary components, software, and data analysis tools.

Competing Interests

The authors declare that there are no conflicts of interest related to the publication of this manuscript. The research was conducted in an independent manner, and no commercial interests or affiliations have influenced the findings or conclusions presented in the study.

Human and Animal Related Study

Since this research does not involve any human or animal subjects, the following applies:

Ethical Approval

As the study did not involve human or animal subjects, ethical approval was not required.

Informed Consent

Informed consent was not applicable as no human participants were involved in the study. The research focused solely on the development and testing of an IoT-based system for agricultural use.

Page No.: 9

REFERENCES

- 1. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2012). Reliability improvement of radial distribution system with distributed generation. *International Journal of Engineering Science and Technology (IJEST)*, 4(09), 4003-4011.
- 2. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
- 3. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. *International Journal of Electrical and Computer Engineering* (*IJECE*), 11(1), 114-123.
- 4. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, 5(6), 791-803.
- 5. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 6. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2015). Voltage stability enhancement of distribution system using network reconfiguration in the presence of DG. *Distributed Generation & Alternative Energy Journal*, 30(4), 37-54.
- 7. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 8. Madhavi, M., & Murthy, G. V. (2020). Role of certifications in improving the quality of Education in Outcome Based Education. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 9. Varaprasad Rao, M., Srujan Raju, K., Vishnu Murthy, G., & Kavitha Rani, B. (2020). Configure and management of internet of things. In *Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19* (pp. 163-172). Springer Singapore.
- 10. Murthy, G. V. K., Suresh, C. H. V., Sowjankumar, K., & Hanumantharao, B. (2019). Impact of distributed generation on unbalanced radial distribution system. *International Journal of Scientific and Technology Research*, 8(9), 539-542.
- 11. Baskar, M., Rajagopal, R. D., BVVS, P., Babu, J. C., Bartáková, G. P., & Arulananth, T. S. (2023). Multiregion minutiae depth value-based efficient forged finger print analysis. *Plos one*, *18*(11), e0293249.
- 12. Mukiri, R. R., & Prasad, D. B. (2019, September). Developing Secure Storage of cloud with IoT Gateway. In *Proceedings of International Conference on Advancements in Computing & Management (ICACM)*.
- 13. Venkatesh, C., Prasad, B. V. V. S., Khan, M., Babu, J. C., & Dasu, M. V. (2024). An automatic diagnostic model for the detection and classification of cardiovascular diseases based on swarm intelligence technique. *Heliyon*, 10(3).
- 14. Ramesh, M., Mandapati, S., Prasad, B. S., & Kumar, B. S. (2021, December). Machine learning based cardiac magnetic resonance imaging (cmri) for cardiac disease detection. In 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) (pp. 1-5). IEEE.
- 15. Kumar, B. S., Prasad, B. S., & Vyas, S. (2020). Combining the OGA with IDS to improve the detection rate. *Materials Today: Proceedings*.
- 16. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 17. Siva Prasad, B. V. V., Sucharitha, G., Venkatesan, K. G. S., Patnala, T. R., Murari, T., & Karanam, S. R. (2022). Optimisation of the execution time using hadoop-based parallel machine learning on computing clusters. In *Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021* (pp. 233-244). Singapore: Springer Nature Singapore.
- 18. Prasad, B. V., & Ali, S. S. (2017). Software–defined networking based secure rout-ing in mobile ad hoc network. *International Journal of Engineering & Technology*, 7(1.2), 229.
- 19. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Non-

- terrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 21. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 23. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
- 24. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 25. KATIKA, R., & BALRAM, G. (2013). Video Multicasting Framework for Extended Wireless Mesh Networks Environment. pp-427-434, IJSRET, 2(7).
- 26. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 27. Prasad, P. S., & Rao, S. K. M. (2017). A Survey on Performance Analysis of ManetsUnder Security Attacks. *network*, 6(7).
- 28. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. *Journal of Electrical Systems*, 20(1s), 900-910.
- 29. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. *Journal of Theoretical and Applied Information Technology*, 100(13).
- 30. Reddy, P. R. S., Ram, V. S. S., Greshma, V., & Kumar, K. S. Prediction of Heart Healthiness.
- 31. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
- 32. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 33. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 34. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 35. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, *13*(1), 159-168.
- 36. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication*, *Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 37. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 38. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class

- Selective Image Processing.
- 39. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 40. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 41. Samya, B., Archana, M., Ramana, T. V., Raju, K. B., & Ramineni, K. (2024, February). Automated Student Assignment Evaluation Based on Information Retrieval and Statistical Techniques. In *Congress on Control, Robotics, and Mechatronics* (pp. 157-167). Singapore: Springer Nature Singapore.
- 42. Sravan, K., Rao, L. G., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2024). Analyze the Quality of Wine Based on Machine Learning Approach Check for updates. *Data Science and Applications: Proceedings of ICDSA 2023, Volume 3*, 820, 351.
- 43. Chandhar, K., Ramineni, K., Ramakrishna, E., Ramana, T. V., Sandeep, A., & Kalyan, K. (2023, December). Enhancing Crop Yield Prediction in India: A Comparative Analysis of Machine Learning Models. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON) (pp. 1-4). IEEE.
- 44. Ramineni, K., Shankar, K., Shabana, Mahender, A., & Mohmmad, S. (2023, June). Detecting of Tree Cutting Sound in the Forest by Machine Learning Intelligence. In *International Conference on Power Engineering and Intelligent Systems (PEIS)* (pp. 303-314). Singapore: Springer Nature Singapore.
- 45. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 46. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 47. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 48. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 50. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 51. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 52. Rao, K. R., & Amarnadh, V. QoS Support for Cross-Layer Scheduling Algorithm in Wireless Networks.
- 53. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 54. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 55. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 56. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 57. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 58. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 59. Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 60. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning

- Optimization." (2024).
- 61. FELIX, ARUL SELVAN M. Mr D., and XAVIER DHAS Mr S. KALAIVANAN. "Averting Eavesdrop Intrusion in Industrial Wireless Sensor Networks."
- 62. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 63. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3).
- 64. Reddy, A. V. B., & Ujwala, B. Answering Xml Ouery Using Tree Based Association Rules.
- 65. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
- 66. Khadse, S. P., & Ingle, S. D. (2011, February). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data in the Bhuleshwari river basin, Amravati District, Maharashtra. In *National Conference on Geology and Mineral Resources of India, Aurangabad* (pp. 11-12).
- 67. Ingle, S. D. Monitoring and Modeling Approaches for Evaluating Managed Aquifer Recharge (MAR) Performance.
- 68. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
- 69. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 70. Tambi, V. K., & Singh, N. Evaluation of Web Services using Various Metrics for Mobile Environments and Multimedia Conferences based on SOAP and REST Principles.
- 71. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 72. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 73. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 74. Tambi, V. K., & Singh, N. Blockchain Technology and Cybersecurity Utilisation in New Smart City Applications.
- 75. Tambi, V. K., & Singh, N. New Smart City Applications using Blockchain Technology and Cybersecurity Utilisation.
- 76. Kumar, T. V. (2018). Project Risk Management System Development Based on Industry 4.0 Technology and its Practical Implications.
- 77. Arora, P., & Bhardwaj, S. Using Knowledge Discovery and Data Mining Techniques in Cloud Computing to Advance Security.
- 78. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 79. Arora, P., & Bhardwaj, S. A Thorough Examination of Privacy Issues using Self-Service Paradigms in the Cloud Computing Context.
- 80. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 81. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 82. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. *machine learning*, 8(7).
- 83. Arora, Pankit, and Sachin Bhardwaj. "A Very Effective and Safe Method for Preserving Privacy in Cloud Data Storage Settings."
- 84. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 85. Arora, P., & Bhardwaj, S. The Applicability of Various Cybersecurity Services to Prevent Attacks on

- Smart Homes.
- 86. Arora, P., & Bhardwaj, S. Designs for Secure and Reliable Intrusion Detection Systems using Artificial Intelligence Techniques.
- 87. Khan, A. (2020). Formulation and Evaluation of Flurbiprofen Solid Dispersions using Novel Carriers for Enhancement of Solubility. *Asian Journal of Pharmaceutics (AJP)*, 14(03).
- 88. Jindal, S., Singh, M., & Chauhan, J. (2024). Effect and Optimization of Welding Parameters and Flux Baking on Weld Bead Properties and Tensile Strength in Submerged Arc Welding of HSLA 100 Steel. *Transactions of the Indian Institute of Metals*, 77(3), 747-766.
- 89. Chauhan, M. J. (2017). Optimization Of Parameters For Gas Metal Arc Welding Of Mild Steel Using Taguchi's.
- 90. Singh, S., Kumar, M., Singh, J., Meena, M. L., Dangayach, G. S., & Shukla, D. K. (2023). Investigating the Influence of ASAW Process Parameters on Chemical Composition, Mechanical Properties and Corrosion Rate of HSLA Steel Weldments. *Transactions of the Indian Institute of Metals*, 76(10), 2791-2806.
- 91. Monika, J. C. A REVIEW PAPER ON GAS METAL ARC WELDING (GMAW) OF MILD STEEL 1018 BY USING TAGUCHI. *Carbon*, 100, 0-14.
- 92. Sharma, S., & Dutta, N. A Large-Scale Empirical Study Identifying Practitioners' Perspectives on Challenges in Docker Development: Analysis using Stack Overflow.
- 93. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 94. Sharma, S., & Dutta, N. Assessment of Web Services based on SOAP and REST Principles using Different Metrics for Mobile Environment and Multimedia Conference.
- 95. Sharma, S., & Dutta, N. Design and Implementation of a Pattern-based J2EE Application Development Environment.
- 96. Sharma, S., & Dutta, N. Evaluation of Potential REST Web Service Description for Graph-based Service Discovery Focused on Hypermedia.
- 97. Sharma, S., & Dutta, N. A Comparative Exploration of Unstructured Data with SQL and NO-SQL Database Management Systems.
- 98. Sharma, S., & Dutta, N. Examination of Anomaly Process Detection Using Negative Selection Algorithm and Classification Techniques.
- 99. Sharma, S., & Dutta, N. Utilization of Blockchain Technology with Cybersecurity in Emerging Smart City Applications.
- 100.Sharma, S., & Dutta, N. Practical Implications and Development of Project Risk Management Framework based on Industry 4.0 Technologies.
- 101.Sharma, S., & Dutta, N. Design and Development of Project Risk Management System using Industry 4.0 Technology and Its Practical Implications.
- 102. Davuluri, S. K., Alvi, S. A. M., Aeri, M., Agarwal, A., Serajuddin, M., & Hasan, Z. (2023, April). A Security Model for Perceptive 5G-Powered BC IoT Associated Deep Learning. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 118-125). IEEE.
- 103.Rathod, C. H. A. N. D. A. R., & Reddy, G. K. (2016). Experimental investigation of angular distortion and transverse shrinkage in CO2 arc welding process. *International Journal of Mechanical Engineering*, 5, 21-28.
- 104.Rao, G. V., Reddy, G. K., Jagadish Babu, G., & Rao, V. V. S. (2012). Prediction of thermal post buckling and deduction of large amplitude vibration behavior of spring-hinged beams. *Forschung im Ingenieurwesen*, 76, 51-58.
- 105. Reddy, E. J., Reddy, G. K., & Rajendra, D. (2021). Design of lifting tackle for armor plate of sinter machine. *International Journal on Technical and Physical Problems of Engineering*, 13, 23-28.
- 106.Reddy, G. K., & Sravanthhi, B. (2019). Design and analysis of a propeller blade used for marine engine. *International Journal of Scientific Research in Science, Engineering and Technology*, 6(1), 440-445.
- 107.Reddy, H., Reddy, G., Phanindra, G., & Kumar, K. (2018). Design and Analysis of Condenser Using 3D Modelling Software. *International Journal of Research in Engineering and Technology*, 7, 2319-1168.

- 108. Reddy, E. J., & Sridhar, C. N. V., Rangadu VP (2015) Knowledge Based Engineering: Notion, Approaches and Future Trends. *Am J Intell Syst*, 5, 1-17.
- 109.Reddy, E. J., & Rangadu, V. P. (2018). Development of knowledge based parametric CAD modeling system for spur gear: An approach. *Alexandria engineering journal*, *57*(4), 3139-3149.
- 110. Jayakiran Reddy, E., Sridhar, C. N. V., & Pandu Rangadu, V. (2016). Research and development of knowledge based intelligent design system for bearings library construction using solidworks API. In *Intelligent Systems Technologies and Applications: Volume 2* (pp. 311-319). Springer International Publishing.
- 111.Reddy, E. J., Venkatachalapathi, N., & Rangadu, V. P. (2018). Development of an approach for Knowledge-Based System for CAD modelling. *Materials Today: Proceedings*, *5*(5), 13375-13382.
- 112.Reddy, E., Kumar, S., Rollings, N., & Chandra, R. (2015). Mobile application for dengue fever monitoring and tracking via GPS: case study for fiji. *arXiv preprint arXiv:1503.00814*.
- 113. Parthiban, K. G., & Vijayachitra, S. (2015). Spike detection from electroencephalogram signals with aid of hybrid genetic algorithm-particle swarm optimization. *Journal of Medical Imaging and Health Informatics*, 5(5), 936-944.
- 114.Mathew, O. C., Dhanapal, R., Visalakshi, P., Parthiban, K. G., & Karthik, S. (2020). Distributed security model for remote healthcare (dsm-rh) services in internet of things environment. *Journal of Medical Imaging and Health Informatics*, 10(1), 185-193.
- 115. Parthiban, K. G., Vijayachitra, S., & Dhanapal, R. (2019). Hybrid dragonfly optimization-based artificial neural network for the recognition of epilepsy. *International Journal of Computational Intelligence Systems*, 12(2), 1261-1269.
- 116.Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
- 117.Bhat, S. Automobile Cabin Pre-Conditioning Method Driven by Environmental Conditions with Multi-Satisfaction Goals.
- 118. Bhat, S. Thermal Comfort Models' Applicability to Automobile Cabin Environments.
- 119.Bhat, S. Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
- 120.Bhat, S. Increasing the Cooling Efficiency of Data Centre Servers with Heat Pipes Based on Liquid Cooling.
- 121.Bhat, S. Deep Reinforcement Learning for Energy-Efficient Thermal Comfort Control in Smart Buildings.
- 122.Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
- 123. Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
- 124.Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
- 125.Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and Optimisation.
- 126. Tayal, S., Upadhyay, A. K., Kumar, D., & Rahi, S. B. (Eds.). (2022). *Emerging low-power semiconductor devices: Applications for future technology nodes*. CRC Press.
- 127. Kumar, T. V., & Balamurugan, N. B. (2018). Analytical modeling of InSb/AlInSb heterostructure dual gate high electron mobility transistors. *AEU-International Journal of Electronics and Communications*, 94, 19-25.
- 128.Karthick, R., Rinoj, B., Kumar, T. V., Prabaharan, A. M., & Selvaprasanth, P. (2019). Automated Health Monitoring System for Premature Fetus. *Asian Journal of Applied Science and Technology (AJAST)(Peer Reviewed Quarterly International Journal) Volume*, 3, 17-23.
- 129. Venish Kumar, T., & Balamurugan, N. B. (2020). Three-dimensional analytical modeling for small-geometry AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs). *Journal of Computational Electronics*, 19, 1107-1115.
- 130.Tejani, A. (2021). Integrating energy-efficient HVAC systems into historical buildings: Challenges and solutions for balancing preservation and modernization. *ESP Journal of Engineering & Technology Advancements*, 1(1), 83-97.
- 131. Tejani, A., Yadav, J., Toshniwal, V., & Gajjar, H. (2022). Achieving net-zero energy buildings: The

- strategic role of HVAC systems in design and implementation. *ESP Journal of Engineering & Technology Advancements*, 2(1), 39-55.
- 132.Govindaraj, V. (2024). The Future of Mainframe IDMS: Leveraging Artificial Intelligence for Modernization and Efficiency. *International Journal of Advanced Computer Science & Applications*, 15(11).
- 133. Jayasingh, S. K., Mishra, R. K., Swain, S., & Sahoo, A. K. SENTIMENT ANALYSIS TO HANDLE COMPLEX LINGUISTIC STRUCTURES: A REVIEW ON EXISTING METHODOLOGIES.
- 134.Bandi, M., Masimukku, A. K., Vemula, R., & Vallu, S. (2024). Predictive Analytics in Healthcare: Enhancing Patient Outcomes through Data-Driven Forecasting and Decision-Making. *International Numeric Journal of Machine Learning and Robots*, 8(8), 1-20.
- 135. Harinath, D., Bandi, M., Patil, A., Murthy, M. R., & Raju, A. V. S. (2024). Enhanced Data Security and Privacy in IoT devices using Blockchain Technology and Quantum Cryptography. *Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793)*, 34(6).
- 136.Harinath, D., Patil, A., Bandi, M., Raju, A. V. S., Murthy, M. R., & Spandana, D. (2024). Smart Farming System—An Efficient technique by Predicting Agriculture Yields Based on Machine Learning. *Technische Sicherheit (Technical Security) Journal*, 24(5), 82-88.
- 137. Masimukku, A. K., Bandi, M., Vallu, S., Patil, A., Vasundhara, K. L., & Murthy, M. R. (2025). Innovative Approaches in Diabetes Management: Leveraging Technology for Improved Healthcare Outcomes. *International Meridian Journal*, 7(7).
- 138.Harinath, D., Patil, A., Ramadevi, G. R., Bandi, M., Murthy, M. R., & Reddy, K. S. Enhancing Routing Efficiency and Performance in Mobile Ad-Hoc Networks Using Deep Learning Techniques.
- 139. Thamma, S. R. (2024). A Comprehensive Evaluation and Methodology on Enhancing Computational Efficiency through Accelerated Computing.
- 140.Thamma, S. R. (2024). An Experimental Analysis of Revolutionizing Banking and Healthcare with Generative AI.
- 141. Thamma, S. R. (2024). A Case Study on Transforming Legacy Databases Seamless Migration to Snowflake.
- 142. Vadisetty, R. (2020). Privacy-Preserving Machine Learning Techniques for Data in Multi Cloud Environments. *Corrosion Management ISSN: 1355-5243, 30*(1), 57-74.
- 143. Vadisetty, R. (2024, November). Multi Layered Cloud Technologies to achieve Interoperability in AI. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-5). IEEE.
- 144. Vadisetty, R. (2024, November). The Effects of Cyber Security Attacks on Data Integrity in AI. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.
- 145. Vadisetty, R. (2024, November). Efficient Large-Scale Data based on Cloud Framework using Critical Influences on Financial Landscape. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.