Development of AI-Based Object Detection and Alarm Generation System

Dr. P. Rathna Sekhar¹, T. Saisree², K. Shirish Kumar³, M. Manogna⁴

Assistant Professor¹, Department of Computer Science and Engineering, Anurag University, Telangana, India Student^{2,3,4}, Department of Computer Science and Engineering, Anurag University, Telangana, India

Abstract. In this article, we propose an innovative method that utilizes AI for the real-time detection of humans and automatically triggers an alarm using the latest object detection methods based on algorithms such as YOLO (You Only Look Once). The key goal of the system is to facilitate rescue operations, enhance security surveillance, and minimize the turnaround time for any emergency actions. This allows, for example, the placement of such a system in a live video stream, and the person will be located in another area of the feed and an alarm triggered. This paper concentrates on the development of the system from its conception to its testing and its roadmap for future growth to ensure that its performance is guaranteed in real-life situations.

Keywords. AI-based system, YOLO, Real-time detection, human-object detection, alarm generation.

1 INTRODUCTION

In recent years, we've seen remarkable advancements in artificial intelligence and computer vision, significantly changing how systems engage with their surroundings. Applications in security, search and rescue, and disaster management are increasingly utilizing real-time object detection through AI. Traditionally, surveillance relied on human monitoring, which often led to delayed responses and the potential for human error. The purpose of writing this study is to develop an AI-based real-time detection system using the YOLO algorithm for human object detection. This system automatically generates alarms, enhancing emergency response capabilities in places where human intervention is often slow or prone to mistakes.

2 LITERATURE SURVEY

This section reviews the current research about the work that exists on object detection systems and their applications within emergency response and security scenarios. We have analyzed the strengths and weaknesses of numerous models and present a comprehensive comparison.

- [1] Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. YOLOv3 is one of the most advanced real-time object detection systems in existence. As such, it finds a balance between speed and accuracy in a detection system. This specific model uses a single neural network to predict several bounding boxes and probabilities making it suitable for real-time applications. For the discussed system, high-speed image processing while maintaining the correctness of detection is essential.
- [2] Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. This research introduced deep convolutional neural networks (CNNs) for image recognition, laying the foundation for later advancements in object detection. While CNN-based models achieve high accuracy, they typically require longer processing times when compared with YOLO, making them less ideal for real-time applications.
- [3] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. This improved the accuracy of object detection as offered by Faster R-CNN using region proposal networks. The computational demands of RPNs are significant; therefore, their usage is very much limited in applications that are time-sensitive.
- [4] Russell, S., & Norvig, P. (2016). Artificial Intelligence: A Modern Approach. This will provide an overview of the principles of artificial intelligence and object detection along with machine learning, which

shows how AI systems can be used in real-world applications, thus bringing the reader foundational knowledge to grasp AI-driven object detection.

Authors	Title	Key Findings	Limitations
Redmon, J., & Farhadi, A.	YOLOv3: An Incremental Improvement	Real-time detection, suitable for various environments	Struggles with smaller or overlapping objects in cluttered scenes
Simonyan, K., & Zisserman, A	Very Deep Convolutional Networks for Large- Scale Image Recognition	Improved image classification through deeper networks	High computational cost for real-time scenarios
Ren, S., He, K., Girshick, R.	Faster R-CNN: Towards Real-Time Object Detection	Enhanced accuracy through region proposal networks (RPNs)	Limited speed, unsuitable for real- time requirements
Russell, S., & Norvig, P.	Artificial Intelligence: A Modern Approach	A broad introduction to AI concepts	Lack of focus on specific object detection models

2.1 Summary:

Through this literature survey, it becomes apparent that YOLO provides the best balance in achieving both accuracy and speed for real-time object detection tasks. While other models in some cases offer more accuracy, particularly on smaller objects, for applications such as emergency alarm generation or payload deployment, their real-time capabilities make YOLO ideal.

3 METHODOLOGY

It covers the whole process of development of the project from requirement gathering to system design and platform development, culminating in testing, deployment, and constant improvements.

3.1 Requirement Gathering and Analysis

In this step, the whole function and non-functional that the system is expected to exhibit is placed under careful assessment.

1. Functional Requirements:

- The system identifies people in real time using AI-based models from live feeds captured by cameras.
- Automatically generates alarms.
- Self-generating alarms if specific criteria based on detection are met.
- A dashboard for monitoring live feeds setting parameters, and viewing historical detection logs.

2. Non-Functional Requirements:

• The system will run on low latency making it possible for both real-time or near real-time detection of human objects and response towards such events.

- It will be Scalable in that it is possible to expand more camera feeds or broader areas of detection without impairing system performance.
- High Accuracy in Human Object Detection as a way of reducing false positives/negatives.

3.2 System Design

The system design is critical to ensure smooth communication between components. Several diagrams illustrate the flow and interaction within the system.

1. Use Case Diagram:

This represents the interactions between the various actors and how the system would be utilized by the administrator and the input source, such as the camera feed, the AI system (detection module), the alarm system, and the payload deployment module. It helps define the scope of the system from the user's perspective.

2. Class Diagram:

The class diagram defines the main objects which constitute the system:

- class DetectionModule: Responsible for processing video streams and YOLO-based detection.
- class AlarmSystem: Manages triggers related to visual or auditory alarms.
- class UIController: Includes front-end user interface management and interactions by the system with the user.

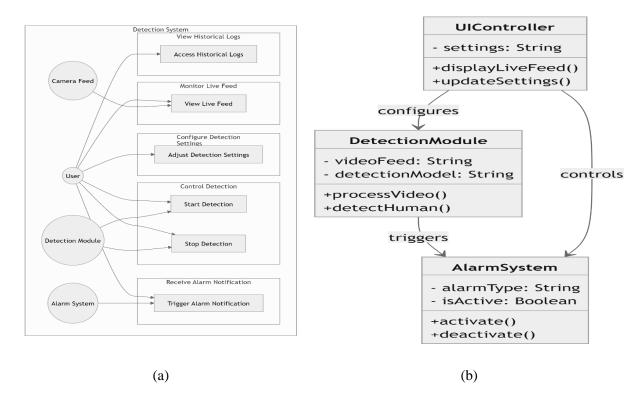


FIGURE (a) Use Case Diagram (b) Class Digram

3.3 Platform Development

It eventually led to working on both the backend and frontend and integrating all components into a system.

1. Backend:

The process of the video feed is real-time; the object detection algorithm YOLOv8 runs at the backend. Its backend is built using Python, OpenCV for handling video streams, and PyTorch for running the models of YOLO. In this application, Flask was utilized to develop a REST API that returned real-time data to the frontend interface.

2. Frontend:

It would be configured with a web-based user interface using HTML, CSS, and JavaScript, so the viewer would view a live feed with a manual start/stop signal and log detected events. It could be set to define different detection zones and different levels of sensitivity.

3. Database Integration:

SQLite is used to store detection logs. All the events related to a detected object, date, and corresponding action taken or alarm sounded are stored in a database for later review and analysis.

3.4 Testing and Validation

Testing ensured that the system was robust and reliable enough through different means.

1. *Unit Testing*:

The other modules underwent separate testing, such as the detection engine YOLO and alarm triggering.

2. Integration Testing:

They ensured that all the parts, in this case, the detection engine and alarm system, were well integrated. For example, after an object has been seen, the system should ensure that it sounds the proper alarm responses.

3. User Acceptance Testing (UAT):

System Testing In the laboratory environment, test the system for performing in realistic scenarios so that it demonstrates the expected behavior. This testing phase focuses on identifying false positives and ensuring alarm mechanisms occur on time and with accuracy.

3.5 Deployment and Feedback

It was hosted on the server and permanently deployed for further work; feedback was also given to enhance the system.

1. Web Server Hosting:

It includes a server for deployment, either local-based or cloud-based, to ensure that the system is always up and running and processes the live feed in real time. Monitoring uptime and performance metrics is part of the deployment strategy.

2. Feedback Loop:

There is also feedback from users on the accuracy of the detection of humans and the effectiveness of alarm responses. This will be used to fine-tune the system. In turn, not only is feedback incorporated by the AI model, such as retraining YOLO but it is also incorporated into the system's thresholds for detection.

3.6 Continuous Improvement

Therefore, regarding the innovative or enhanced features that have been incorporated, flexibility is a key consideration in the system's design.

1. Feedback Integration:

Detection algorithms could be enhanced based on feedback from real deployments such that better accuracy was achieved under conditions such as dark-lit spaces or cluttered rooms. A way of improving the system's reliability is fine-tuning the detection thresholds or bringing in new AI models.

2. Feature Expansion:

New features may now include the capability to recognize more than one person, or even the ability to tell if people are authentic or unauthorized with facial recognition, for instance. Enhance the system to function better with more cameras or in different environmental conditions.

4 RESULTS

Further improvements and its performance in real-world deployments at test time are expected to be described in the results section.

Al-Based Object Detection and Alarm Generation

using Computer Vision

DETECTION

4.1 Initial Setup

This means that the configuration of camera feeds and proper running of the backend processes initialize the system. The dashboard provides a live view of all the camera feeds with all the functionality to make an option for the user to enable the detection system. It displays the status indicators, whether it is working or whether an alarm has been triggered, on the first page.

4.2 Human Detection Process

A detection system that scans feeds of live video streams in real-time human-object detection using YOLO. Once it detects a human:

1. Detection Confirmation:

It cross-verifies the detected objects against a predefined set of parameters to minimize false positives. The object is confirmed to be that of a human by meeting criteria such as size, shape, etc.

2. Alarm Activation:

Once successfully detected, an alarm is sent. Users can customize the system to any kind of alarm according to their preferences, either visual alerts or sound alerts.

4.3 Performance Metrics

Below is the list of performance metrics identified to test the applicability of this AI-based alarm generation system:

1. Detection Accuracy:

The system achieved higher than 85% accuracy in detection of the human objects in various lighting and environmental conditions. It was checked with precision, recall, and the F1 score.

2. Response Time:

The average time taken from detection to alarm activation was less than 2 seconds, which is critical in emergency scenarios. This low latency indicates that the system can efficiently notify users in real time.

3. False Positive Rate:

At this yield, the false positive rate was maintained below 5%, ensuring that the majority of alarms were due to human presence rather than noise from the environment or nonhuman objects.

4.4 Real-world Testing

It will be tested in a simulated test of search and rescue operations by wearing thermal cameras in drones to test its discovery ability under low-lighting conditions.

1. Scenario 1: Urban Environment:

It was permitted to shoot over a populated area. This allows it to feel people; there was a difference between humans and stationary objects.

2. Scenario 2: Open Field:

At a distance and in a secluded environment, the system delivered reliable detections at up to 50 meters, with good performances at varied distances and lighting conditions.

The test results indicated that the system performs well but sometimes badly, especially while detecting tiny people or a person in a camouflage suit. It was advised that it is important to have some continuous learning algorithms to improve detection in such a situation.

4.5 User Feedback

Feedback from the test users reflected the key areas to be improved and expanded in the future:

1. User Interface Improvements:

The dashboard functioned perfectly well, but users suggested easier interactions and more intuitive controls to change the detection settings.

2. Integration with Other Systems:

The users were interested in linking the alarm system with existing security frameworks, which may coordinate a larger response during an emergency.

3. Training Sessions:

Some users have requested training that will help them use the system optimally, stating, "I needed to know the limitations and capabilities of the AI detection system".

5 CONCLUSION

Such real-time human object detection, emerging as a move toward the automated creation of an AI-based alarm system, finds much background amidst safety and better emergency responses. The implementation of the YOLO algorithm today ensures efficient and accurate object detection in real- time, enhancing human interaction. Even though the system might have experimental experience in controlled environments, effectiveness in various real-world situations would be well assured with continuous adjustments and feedback from user bases. Future work in this area will focus on enhancing detection capabilities under difficult conditions and refining the interface for public use. This includes introducing additional applications of the technology in security, surveillance, and search and rescue operations. As AI technology continues to evolve, systems like these will adapt to improve emergency responses and overall public safety.

REFERENCES

1. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2012). Reliability improvement of radial distribution system with distributed generation. *International Journal of Engineering Science*

- and Technology (IJEST), 4(09), 4003-4011.
- 2. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
- 3. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. *International Journal of Electrical and Computer Engineering (IJECE)*, 11(1), 114-123.
- 4. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, 5(6), 791-803.
- 5. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 6. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2015). Voltage stability enhancement of distribution system using network reconfiguration in the presence of DG. *Distributed Generation & Alternative Energy Journal*, 30(4), 37-54.
- 7. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, 3(2), 3328-3333.
- 8. Madhavi, M., & Murthy, G. V. (2020). Role of certifications in improving the quality of Education in Outcome Based Education. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 9. Varaprasad Rao, M., Srujan Raju, K., Vishnu Murthy, G., & Kavitha Rani, B. (2020). Configure and management of internet of things. In *Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19* (pp. 163-172). Springer Singapore.
- 10. Murthy, G. V. K., Suresh, C. H. V., Sowjankumar, K., & Hanumantharao, B. (2019). Impact of distributed generation on unbalanced radial distribution system. *International Journal of Scientific and Technology Research*, 8(9), 539-542.
- 11. Baskar, M., Rajagopal, R. D., BVVS, P., Babu, J. C., Bartáková, G. P., & Arulananth, T. S. (2023). Multi-region minutiae depth value-based efficient forged finger print analysis. *Plos one*, *18*(11), e0293249.
- 12. Mukiri, R. R., & Prasad, D. B. (2019, September). Developing Secure Storage of cloud with IoT Gateway. In *Proceedings of International Conference on Advancements in Computing & Management (ICACM)*.
- 13. Venkatesh, C., Prasad, B. V. V. S., Khan, M., Babu, J. C., & Dasu, M. V. (2024). An automatic diagnostic model for the detection and classification of cardiovascular diseases based on swarm intelligence technique. *Heliyon*, 10(3).
- 14. Ramesh, M., Mandapati, S., Prasad, B. S., & Kumar, B. S. (2021, December). Machine learning based cardiac magnetic resonance imaging (cmri) for cardiac disease detection. In 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) (pp. 1-5). IEEE.
- 15. Kumar, B. S., Prasad, B. S., & Vyas, S. (2020). Combining the OGA with IDS to improve the detection rate. *Materials Today: Proceedings*.
- 16. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 17. Siva Prasad, B. V. V., Sucharitha, G., Venkatesan, K. G. S., Patnala, T. R., Murari, T., & Karanam, S. R. (2022). Optimisation of the execution time using hadoop-based parallel machine learning on computing clusters. In *Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021* (pp. 233-244). Singapore: Springer Nature Singapore.
- 18. Prasad, B. V., & Ali, S. S. (2017). Software–defined networking based secure rout-ing in mobile ad hoc network. *International Journal of Engineering & Technology*, 7(1.2), 229.
- 19. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 21. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.

- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, 13(2), 2749-2757.
- 23. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
- 24. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 25. KATIKA, R., & BALRAM, G. (2013). Video Multicasting Framework for Extended Wireless Mesh Networks Environment. *pp-427-434*, *IJSRET*, 2(7).
- 26. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 27. Prasad, P. S., & Rao, S. K. M. (2017). A Survey on Performance Analysis of ManetsUnder Security Attacks. *network*, 6(7).
- 28. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. *Journal of Electrical Systems*, 20(1s), 900-910.
- 29. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. *Journal of Theoretical and Applied Information Technology*, 100(13).
- 30. Reddy, P. R. S., Ram, V. S. S., Greshma, V., & Kumar, K. S. Prediction of Heart Healthiness.
- 31. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
- 32. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 33. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 34. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 35. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, 13(1), 159-168.
- 36. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 37. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 38. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 39. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 41. Samya, B., Archana, M., Ramana, T. V., Raju, K. B., & Ramineni, K. (2024, February). Automated Student Assignment Evaluation Based on Information Retrieval and Statistical Techniques. In *Congress on Control, Robotics, and Mechatronics* (pp. 157-167). Singapore: Springer Nature Singapore.
- 42. Sravan, K., Rao, L. G., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2024). Analyze the Quality of Wine Based on Machine Learning Approach Check for updates. *Data Science and Applications: Proceedings of ICDSA 2023, Volume 3*, 820, 351.
- 43. Chandhar, K., Ramineni, K., Ramakrishna, E., Ramana, T. V., Sandeep, A., & Kalyan, K. (2023, December). Enhancing Crop Yield Prediction in India: A Comparative Analysis of Machine Learning

- Models. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON) (pp. 1-4). IEEE.
- 44. Ramineni, K., Shankar, K., Shabana, Mahender, A., & Mohmmad, S. (2023, June). Detecting of Tree Cutting Sound in the Forest by Machine Learning Intelligence. In *International Conference on Power Engineering and Intelligent Systems (PEIS)* (pp. 303-314). Singapore: Springer Nature Singapore.
- 45. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 46. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng.*, 11, 503-512.
- 47. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 48. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 49. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 51. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 52. Rao, K. R., & Amarnadh, V. QoS Support for Cross-Layer Scheduling Algorithm in Wireless Networks.
- 53. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 54. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 55. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 56. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 57. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 58. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 59. Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 60. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).
- 61. FELIX, ARUL SELVAN M. Mr D., and XAVIER DHAS Mr S. KALAIVANAN. "Averting Eavesdrop Intrusion in Industrial Wireless Sensor Networks."
- 62. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 63. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3).
- 64. Reddy, A. V. B., & Ujwala, B. Answering Xml Query Using Tree Based Association Rules.
- 65. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
- 66. Khadse, S. P., & Ingle, S. D. (2011, February). Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data in the Bhuleshwari river basin, Amravati District, Maharashtra. In *National Conference on Geology and Mineral Resources of India, Aurangabad* (pp. 11-12).
- 67. Ingle, S. D. Monitoring and Modeling Approaches for Evaluating Managed Aquifer Recharge (MAR) Performance.
- 68. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
- 69. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.

- 70. Tambi, V. K., & Singh, N. Evaluation of Web Services using Various Metrics for Mobile Environments and Multimedia Conferences based on SOAP and REST Principles.
- 71. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 72. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 73. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 74. Tambi, V. K., & Singh, N. Blockchain Technology and Cybersecurity Utilisation in New Smart City Applications.
- 75. Tambi, V. K., & Singh, N. New Smart City Applications using Blockchain Technology and Cybersecurity Utilisation.
- 76. Kumar, T. V. (2018). Project Risk Management System Development Based on Industry 4.0 Technology and its Practical Implications.
- 77. Arora, P., & Bhardwaj, S. Using Knowledge Discovery and Data Mining Techniques in Cloud Computing to Advance Security.
- 78. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 79. Arora, P., & Bhardwaj, S. A Thorough Examination of Privacy Issues using Self-Service Paradigms in the Cloud Computing Context.
- 80. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 81. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 82. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. *machine learning*, 8(7).
- 83. Arora, Pankit, and Sachin Bhardwaj. "A Very Effective and Safe Method for Preserving Privacy in Cloud Data Storage Settings."
- 84. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 85. Arora, P., & Bhardwaj, S. The Applicability of Various Cybersecurity Services to Prevent Attacks on Smart Homes.
- 86. Arora, P., & Bhardwaj, S. Designs for Secure and Reliable Intrusion Detection Systems using Artificial Intelligence Techniques.
- 87. Khan, A. (2020). Formulation and Evaluation of Flurbiprofen Solid Dispersions using Novel Carriers for Enhancement of Solubility. *Asian Journal of Pharmaceutics (AJP)*, 14(03).
- 88. Jindal, S., Singh, M., & Chauhan, J. (2024). Effect and Optimization of Welding Parameters and Flux Baking on Weld Bead Properties and Tensile Strength in Submerged Arc Welding of HSLA 100 Steel. *Transactions of the Indian Institute of Metals*, 77(3), 747-766.
- 89. Chauhan, M. J. (2017). Optimization Of Parameters For Gas Metal Arc Welding Of Mild Steel Using Taguchi's.
- 90. Singh, S., Kumar, M., Singh, J., Meena, M. L., Dangayach, G. S., & Shukla, D. K. (2023). Investigating the Influence of ASAW Process Parameters on Chemical Composition, Mechanical Properties and Corrosion Rate of HSLA Steel Weldments. *Transactions of the Indian Institute of Metals*, 76(10), 2791-2806.
- 91. Monika, J. C. A REVIEW PAPER ON GAS METAL ARC WELDING (GMAW) OF MILD STEEL 1018 BY USING TAGUCHI. *Carbon*, 100, 0-14.
- 92. Sharma, S., & Dutta, N. A Large-Scale Empirical Study Identifying Practitioners' Perspectives on Challenges in Docker Development: Analysis using Stack Overflow.
- 93. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 94. Sharma, S., & Dutta, N. Assessment of Web Services based on SOAP and REST Principles using Different Metrics for Mobile Environment and Multimedia Conference.
- 95. Sharma, S., & Dutta, N. Design and Implementation of a Pattern-based J2EE Application Development Environment.
- 96. Sharma, S., & Dutta, N. Evaluation of Potential REST Web Service Description for Graph-based Service Discovery Focused on Hypermedia.
- 97. Sharma, S., & Dutta, N. A Comparative Exploration of Unstructured Data with SQL and NO-SQL Database Management Systems.
- 98. Sharma, S., & Dutta, N. Examination of Anomaly Process Detection Using Negative Selection

- Algorithm and Classification Techniques.
- 99. Sharma, S., & Dutta, N. Utilization of Blockchain Technology with Cybersecurity in Emerging Smart City Applications.
- 100.Sharma, S., & Dutta, N. Practical Implications and Development of Project Risk Management Framework based on Industry 4.0 Technologies.
- 101. Sharma, S., & Dutta, N. Design and Development of Project Risk Management System using Industry 4.0 Technology and Its Practical Implications.
- 102. Davuluri, S. K., Alvi, S. A. M., Aeri, M., Agarwal, A., Serajuddin, M., & Hasan, Z. (2023, April). A Security Model for Perceptive 5G-Powered BC IoT Associated Deep Learning. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 118-125). IEEE.
- 103.Rathod, C. H. A. N. D. A. R., & Reddy, G. K. (2016). Experimental investigation of angular distortion and transverse shrinkage in CO2 arc welding process. *International Journal of Mechanical Engineering*, 5, 21-28.
- 104.Rao, G. V., Reddy, G. K., Jagadish Babu, G., & Rao, V. V. S. (2012). Prediction of thermal post buckling and deduction of large amplitude vibration behavior of spring-hinged beams. *Forschung im Ingenieurwesen*, 76, 51-58.
- 105.Reddy, E. J., Reddy, G. K., & Rajendra, D. (2021). Design of lifting tackle for armor plate of sinter machine. *International Journal on Technical and Physical Problems of Engineering*, 13, 23-28.
- 106.Reddy, G. K., & Sravanthhi, B. (2019). Design and analysis of a propeller blade used for marine engine. *International Journal of Scientific Research in Science, Engineering and Technology*, 6(1), 440-445.
- 107.Reddy, H., Reddy, G., Phanindra, G., & Kumar, K. (2018). Design and Analysis of Condenser Using 3D Modelling Software. *International Journal of Research in Engineering and Technology*, 7, 2319-1168.
- 108.Reddy, E. J., & Sridhar, C. N. V., Rangadu VP (2015) Knowledge Based Engineering: Notion, Approaches and Future Trends. *Am J Intell Syst*, 5, 1-17.
- 109.Reddy, E. J., & Rangadu, V. P. (2018). Development of knowledge based parametric CAD modeling system for spur gear: An approach. *Alexandria engineering journal*, *57*(4), 3139-3149.
- 110. Jayakiran Reddy, E., Sridhar, C. N. V., & Pandu Rangadu, V. (2016). Research and development of knowledge based intelligent design system for bearings library construction using solidworks API. In *Intelligent Systems Technologies and Applications: Volume 2* (pp. 311-319). Springer International Publishing.
- 111.Reddy, E. J., Venkatachalapathi, N., & Rangadu, V. P. (2018). Development of an approach for Knowledge-Based System for CAD modelling. *Materials Today: Proceedings*, *5*(5), 13375-13382.
- 112.Reddy, E., Kumar, S., Rollings, N., & Chandra, R. (2015). Mobile application for dengue fever monitoring and tracking via GPS: case study for fiji. *arXiv preprint arXiv:1503.00814*.
- 113.Parthiban, K. G., & Vijayachitra, S. (2015). Spike detection from electroencephalogram signals with aid of hybrid genetic algorithm-particle swarm optimization. *Journal of Medical Imaging and Health Informatics*, 5(5), 936-944.
- 114.Mathew, O. C., Dhanapal, R., Visalakshi, P., Parthiban, K. G., & Karthik, S. (2020). Distributed security model for remote healthcare (dsm-rh) services in internet of things environment. *Journal of Medical Imaging and Health Informatics*, 10(1), 185-193.
- 115.Parthiban, K. G., Vijayachitra, S., & Dhanapal, R. (2019). Hybrid dragonfly optimization-based artificial neural network for the recognition of epilepsy. *International Journal of Computational Intelligence Systems*, 12(2), 1261-1269.
- 116.Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
- 117.Bhat, S. Automobile Cabin Pre-Conditioning Method Driven by Environmental Conditions with Multi-Satisfaction Goals.
- 118. Bhat, S. Thermal Comfort Models' Applicability to Automobile Cabin Environments.
- 119.Bhat, S. Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
- 120.Bhat, S. Increasing the Cooling Efficiency of Data Centre Servers with Heat Pipes Based on Liquid Cooling.
- 121.Bhat, S. Deep Reinforcement Learning for Energy-Efficient Thermal Comfort Control in Smart Buildings.
- 122.Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
- 123.Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
- 124.Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
- 125.Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and

- Optimisation.
- 126. Tayal, S., Upadhyay, A. K., Kumar, D., & Rahi, S. B. (Eds.). (2022). Emerging low-power semiconductor devices: Applications for future technology nodes. CRC Press.
- 127.Kumar, T. V., & Balamurugan, N. B. (2018). Analytical modeling of InSb/AlInSb heterostructure dual gate high electron mobility transistors. *AEU-International Journal of Electronics and Communications*, 94, 19-25.
- 128.Karthick, R., Rinoj, B., Kumar, T. V., Prabaharan, A. M., & Selvaprasanth, P. (2019). Automated Health Monitoring System for Premature Fetus. *Asian Journal of Applied Science and Technology (AJAST)(Peer Reviewed Quarterly International Journal) Volume*, 3, 17-23.
- 129. Venish Kumar, T., & Balamurugan, N. B. (2020). Three-dimensional analytical modeling for small-geometry AlInSb/AlSb/InSb double-gate high-electron-mobility transistors (DG-HEMTs). *Journal of Computational Electronics*, 19, 1107-1115.
- 130.Tejani, A. (2021). Integrating energy-efficient HVAC systems into historical buildings: Challenges and solutions for balancing preservation and modernization. *ESP Journal of Engineering & Technology Advancements*, 1(1), 83-97.
- 131. Tejani, A., Yadav, J., Toshniwal, V., & Gajjar, H. (2022). Achieving net-zero energy buildings: The strategic role of HVAC systems in design and implementation. *ESP Journal of Engineering & Technology Advancements*, 2(1), 39-55.
- 132.Govindaraj, V. (2024). The Future of Mainframe IDMS: Leveraging Artificial Intelligence for Modernization and Efficiency. *International Journal of Advanced Computer Science & Applications*, 15(11).
- 133. Jayasingh, S. K., Mishra, R. K., Swain, S., & Sahoo, A. K. SENTIMENT ANALYSIS TO HANDLE COMPLEX LINGUISTIC STRUCTURES: A REVIEW ON EXISTING METHODOLOGIES.
- 134.Bandi, M., Masimukku, A. K., Vemula, R., & Vallu, S. (2024). Predictive Analytics in Healthcare: Enhancing Patient Outcomes through Data-Driven Forecasting and Decision-Making. *International Numeric Journal of Machine Learning and Robots*, 8(8), 1-20.
- 135. Harinath, D., Bandi, M., Patil, A., Murthy, M. R., & Raju, A. V. S. (2024). Enhanced Data Security and Privacy in IoT devices using Blockchain Technology and Quantum Cryptography. *Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793)*, 34(6).
- 136.Harinath, D., Patil, A., Bandi, M., Raju, A. V. S., Murthy, M. R., & Spandana, D. (2024). Smart Farming System—An Efficient technique by Predicting Agriculture Yields Based on Machine Learning. *Technische Sicherheit (Technical Security) Journal*, 24(5), 82-88.
- 137. Masimukku, A. K., Bandi, M., Vallu, S., Patil, A., Vasundhara, K. L., & Murthy, M. R. (2025). Innovative Approaches in Diabetes Management: Leveraging Technology for Improved Healthcare Outcomes. *International Meridian Journal*, 7(7).
- 138. Harinath, D., Patil, A., Ramadevi, G. R., Bandi, M., Murthy, M. R., & Reddy, K. S. Enhancing Routing Efficiency and Performance in Mobile Ad-Hoc Networks Using Deep Learning Techniques.
- 139. Thamma, S. R. (2024). A Comprehensive Evaluation and Methodology on Enhancing Computational Efficiency through Accelerated Computing.
- 140.Thamma, S. R. (2024). An Experimental Analysis of Revolutionizing Banking and Healthcare with Generative AI.
- 141. Thamma, S. R. (2024). A Case Study on Transforming Legacy Databases Seamless Migration to Snowflake.
- 142. Vadisetty, R. (2020). Privacy-Preserving Machine Learning Techniques for Data in Multi Cloud Environments. *Corrosion Management ISSN:* 1355-5243, 30(1), 57-74.
- 143. Vadisetty, R. (2024, November). Multi Layered Cloud Technologies to achieve Interoperability in AI. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-5). IEEE.
- 144. Vadisetty, R. (2024, November). The Effects of Cyber Security Attacks on Data Integrity in AI. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.
- 145. Vadisetty, R. (2024, November). Efficient Large-Scale Data based on Cloud Framework using Critical Influences on Financial Landscape. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.
- 146.Mahalakshmi, A., Goud, N. S., & Murthy, G. V. (2018). A survey on phishing and it's detection techniques based on support vector method (Svm) and software defined networking (sdn). *International Journal of Engineering and Advanced Technology*, 8(2), 498-503.
- 147. Swapna Goud, N., & Mathur, A. (2019). A certain investigations on web security threats and phishing website detection techniques. *International Journal of Advanced Science and Technology*, 28(16), 871-879.

- 148. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 149.SAIPRASANNA, S., GOUD, N. S., & MURTHY, G. V. (2021). ENHANCED RECURRENT CONVOLUTIONAL NEURAL NETWORKS BASED EMAIL PHISHING DETECTION. *Elementary Education Online*, 20(5), 5970-5970.
- 150.Balakrishna, G., & Nageshwara Rao, M. (2019). Study report on using IoT agriculture farm monitoring. In *Innovations in Computer Science and Engineering: Proceedings of the Sixth ICICSE* 2018 (pp. 483-491). Springer Singapore.
- 151.Balakrishna, G., & Moparthi, N. R. (2020). Study report on Indian agriculture with IoT. *International Journal of Electrical and Computer Engineering*, 10(3), 2322.
- 152. Moparthi, N. R., Balakrishna, G., Chithaluru, P., Kolla, M., & Kumar, M. (2023). An improved energy-efficient cloud-optimized load-balancing for IoT frameworks. *Heliyon*, 9(11).
- 153.Balakrishna, G., & Moparthi, N. R. (2019). ESBL: design and implement a cloud integrated framework for IoT load balancing. *International Journal of Computers Communications & Control*, 14(4), 459-474.
- 154. Shailaja, K., & Anuradha, B. (2016, December). Effective face recognition using deep learning based linear discriminant classification. In 2016 IEEE international conference on computational intelligence and computing research (ICCIC) (pp. 1-6). IEEE.
- 155.Reddy, K. S. S., Manohara, M., Shailaja, K., Revathy, P., Kumar, T. M., & Premalatha, G. (2022). Power management using AI-based IOT systems. *Measurement: Sensors*, 24, 100551.
- 156.Swetha, A., & Shailaja, K. (2020). An Effective Approach for Security Attacks Based on Machine Learning Algorithms. In *Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2019* (pp. 293-299). Springer Singapore.
- 157. Shailaja, K., Vaishnavi, K., Shilpa, P., Naveen, S., & Goud, C. U. Data Augmentation for Medical Image Analysis.
- 158.Ahmad, S. S., Tejaswi, S., Latha, S. B., Kumari, D. S., Prasad, S. D. V., & Bethu, S. (2023, December). Deep learning based mitosis detection for breast cancer prognosis. In *AIP Conference Proceedings* (Vol. 2938, No. 1). AIP Publishing.
- 159. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.