Design of Cybersecurity Smart Controller For Grid Connected Microgrid

Abhiram Soma¹, Enugula Sai Chaitanya², Komati Reddy Amulya³

Department of Computer Science and Engineering, Anurag University

21eg105d01@anurag.edu.in 21eg105d16@anurag.edu.in 21eg105d29@anurag.edu.in

Abstract. The research introduces to the design and implementation of the Cybersecurity Enabled Smart Controller for the grid connected microgrid which uses the combination of the Web technologies and the authentication mechanism which enables real time monitoring with help of the Dashboards built using Chart is which is a framework of JavaScript. Due to the role and connection of the Microgrids with the critical infrastructure they are vulnerable to the cyber threats. This project leverages the use of HTML, CSS, JavaScript and MongoDB to create a secure and responsive system ensuring the operational resilience and data integrity. By focusing on simplicity the project uses user friendly dashboard for monitoring the microgrid data, controlling the grid crafted with HTML, CSS and JavaScript allowing the users to visualize the performance metrics using Chart.js for real time data representation. This methodology focuses on creating secure communication channels which enables effective data management through MongoDB providing a responsive experience on the web application. This approach allows users to monitor grid operations continuously and the access management effectively. The findings focused on creating a user friendly interface using the HTML, CSS, JavaScript which give users the access to monitor and control microgrid operations seamlessly. Utilizing the Chart.js enabled the users to visualize real time performance metrics which enables the operators to make decisions quickly addressing operational efficiencies. This paper proposes a role-based access control system (RBAC) to protect and manage the smart controller of a grid-connected microgrid. The design integrates a login page developed with HTML, JavaScript, and MongoDB for authentication and user management, with three distinct roles: Admin, Power Operator, and User. Each role has access to specific functions in the dashboard, reflecting their respective permissions. The backend was implemented using Node.js and Express to monitor network traffic, detect potential threats, and prevent unauthorized operations. The results demonstrate that the system provides effective protection against cyber threats while ensuring that different users can access the functionalities appropriate to their roles.

Keywords. Role-Based Access Control, Microgrid, Grid Connected Microgrid, Real-Time Monitoring, MongoDB

1 INTRODUCTION

Grid-Connected Microgrids are critical to the modern energy distribution becoming increasingly vulnerable to security threats. Current Systems lack security measures leaving them prone to unauthorized access, data breaches and operational disruptions. The increasing reliance on the grid connected microgrids necessitates the development of secure and robust systems. Microgrids are localized grids which operate independently or in conjunction with the main power grid. They offer multiple benefits like energy reliance, effective usage of renewable energy resources and improved energy efficiency.

The adoption of the microgrids introduced new vulnerabilities due to the lack the security measures needed to address the threats emerging. The systems have become more interconnected and reliant on the digital communication networks leading attractive targets to cyber attackers aiming to disrupt the energy distribution and cause physical damage to the infrastructure. The consequences of the attack can lead to loss of service, financial damage and compromise national security.

Traditional Control Systems lack the security measures for the threats and do not provide real time monitoring, threat detection leaving them exposed to cyber threats such as unauthorized access and data breaches. The consequences of such vulnerabilities can lead to prolonged power outages, financial losses and threat to public safety. Traditional Systems were designed with a focus on functionality and operational efficiency often neglecting the security measures required to counter modern cyber threats. The systems are effective in managing basic microgrid operations falling short to address complex and evolving nature of cyber risks.

The proposed solution offers to provide user-friendly interface for the grid connected microgrid enables efficient real time monitoring, user management, and role based access control. The access control in the website regulates access based roles and privileges. This ensures only authorized personnel who can modify microgrid settings, interact with the system preventing unauthorized configuration changes. The integration of MongoDB with the frontend technologies stores application data which includes the data to be encrypted to maintain confidentiality.

1.1 Current Microgrids Landscape

Microgrids are localized energy systems that can operate in independently with larger electric grid. They have the capability to provide reliable power to a defined area like to a particular community or campus. Microgrids can be disconnected from the main grid during disturbances maintaining power supply to critical loads. They support the integration of renewable energy sources which enhance sustainability and reduce the reliability on fossil fuels. The initial capital investment for microgrids deployment can be very significant which may deter the potential investors in regions where the traditional energy resources are cheaper.

The microgrids landscape is evolving rapidly with many Governments recognizing the roles of microgrids in sustainability and energy security. Due to the technological advancements the enhanced communication technologies facilitate real-time monitoring and control allowing microgrid operators to respond swiftly to changes in demand and supply.

2 RESEARCH METHODOLOGY

The research methodology for the development of the project revolves around creating a secure and user friendly interface system that efficiently monitors and manages the microgrids. The first phase of the research was to understand the vulnerabilities associated with the grid connected microgrids. A thorough review of the previous works on grid systems, microgrid monitoring and cybersecurity challenges was performed to understand the deficiencies in existing system particularly with respect to the security and data visualization. The study and the use of modern web technologies were used for addressing the gaps.

The next phase involved the structured approach beginning with the design and component selection. HTML, CSS and JavaScript were used to create a responsive user interface for the Admins, Power operators and Users. The dashboard allows for real time interaction with the system and displays data visualizations using Chart.js. MongoDB was used as the database for secure and scalable data storage. Node.js and Express.js were used to develop the server side application ensuring secure and efficient communication with the frontend. The role based access mechanism was implemented to ensure that only users with appropriate roles could access the sensitive parts of the application ensuring integrity.

A thorough review of existing literature on microgrid management was conducted to identify the gaps and improving the project design. By choosing the appropriate technologies the requirements and objectives of the project were fulfilled by determining the security needs with the compatibility. The different technologies helped in developing a clear architecture to separate the concerns of the application. The research methodology employed in the project provided a structured approach to develop the project. The project aimed to deliver a robust and secure solution that meets evolving needs of modern energy management.

The research methodology consists of major components: designing and implementing the Role-Based Access Control (RBAC) system to secure the microgrid control interface.

2.1 Project Design

This project adopts a design based research approach which focuses on the functional prototype for the cybersecurity smart controller. The implementation follows a client-server architecture where the frontend (Login page and the dashboards) were built using HTML, CSS, JavaScript and Chart.js, while the backend is handled by Node.js and Express.js. The MongoDB data is used to store user credentials and access logs. The operations of the microgrid is simulated through a web based interface and the roles of the users are classified based on the roles which enables to control the specific functions of the microgrid.

The dashboard incorporated Chart.js for real-time data visualization which allows users to monitor the microgrid performance metrics. It helps the users to make quick informed decisions quickly. The methodology helped in ensuring that it not only secure and efficient but also user friendly addressing the critical needs of microgrids. The findings from the research contribute to improving the microgrids management and security helping to finding new innovations in this sector. MongoDB was choosen to provide flexibility and capability to handle large datasets securely which makes it ideal for storing operational data and credentials of the user.

2.2 Role-Based Access Control (RBAC)

Users can login through the login page where they enter their credentials and depending upon the credentials the system determines the role of the user(Admin, Power Operator or the User). Based on user's role the system grants access to the specific microgrid operations through the different dashboards.

1. Admin Dashboard

Usually has full access to system settings, including user management and resource consumption data.

2. Power Operator Dashboard

Given Access to real-time microgrid power data, system logs, and operation metrics.

3. User Dashboard

General users have access to limited features like monitoring energy consumption relevant to their role and is limited only to viewing.

2.3 Vulnerability Assessment and Literature Review

In the initial phase of our project we conducted a thorough review of the vulnerabilities in existing microgrid systems. This also included reviewing the academic literature, case studies and industry related reports related to the project. The intention of the literature review was intended uncover security flaws, and know about the existing systems and how the research was used to bring improvement to the system, study about the security breaches.

We identified a few cybersecurity threats which included unauthorized access, data manipulation and denial of service attacks. These vulnerabilities highlight the need for role based access and real time monitoring.

3 THEORY AND CALCULATION

Microgrids by design are small scale grids that operate either in the island mode(independent mode) or in parallel with the central grid. They offer advantages including energy resilience, integration of different renewable energy sources and better load management. The interface developed ensures secure and efficient energy distribution ensures secure and efficient energy distribution through functionalities like User Authentication and role based access ensuring that only authorized personnel can modify microgrid settings reducing risk of unauthorized access of users.

While the system relies on theoretical concepts and practices for securing microgrids, practical calculations are necessary for effective monitoring and management of the system.

3.1 Metrics Significance

Key metrics like the average energy consumption and production are critical for the assessment of microgrid performance. These metrics helps the operators identify the inefficiencies and help in making informed decisions to optimize the operations.

3.2 Average Metrics

Average Energy Consumption

Average Consumption=Consumption(i)/n

The average energy consumption helps in understanding how much energy microgrid is used over a given period of time. This metric helps in identifying trends in energy usage which helps in enhancing future energy management strategies. By knowing the average consumption aids helps to identify excessive usage that may indicate potential threats or inefficiencies.

Average Energy Production

Average Production=Production(i)/n

Monitoring average energy production allows the operators to compare it against average consumption which ensures operation of the microgrid within its energy balance. Deviations from average production indicate issues with generation sources and need of maintenance supporting preventive measures against the operational disruptions.

3.3 Energy Efficiency Calculation

Efficiency is an important metric that determines how effectively energy is being utilized or being produced within the microgrid. The energy efficiency can be calculated as:

Efficiency(%) = (Energy Output/Energy Input) * 100

This formula helps determine the effectiveness of energy production systems such as solar panels or wind turbines or the other renewable sources of energy in generating usable energy.

3.4 Power Factor Calculation

Power factor is a crucial measure in power systems, which represents the ratio of real power (used to perform work) to apparent power (total power supplied to the circuit). A power factor close to 1 is used to indicate efficient power usage while a lower power factor suggests the inefficiency.

Power Factor= Real Power / Apparent Power

4 RESULTS AND DISCUSSION

The discussion explores the practical significance of the results and the comparison of the outcomes with the recent advancements for energy systems. The analysis addresses the emerging challenges in microgrid management. The implementation of the project utilized MongoDB, Express, Node.js, HTML, CSS, JavaScript and real-time data visualization. The user authentication system integrated with MongoDB helping to manage the user credentials. Users are assigned with roles which help to determine their access rights. This ensures improving operational security and only authorized personnel can make changes to microgrid settings.

Using Chart, js the systems visualizes real-time energy data like production metrics, turbine efficiency and production metrics. The implementation involved displaying data related to energy sources in pie charts and bar charts which the operators with immediate insights of energy distribution and efficiency. The implementation of a role-based model in this project highlights how security is maintained by limiting access to sensitive functions only to authorized users. As noted by Yang et al. (2022), RBAC has become a necessary approach for securing critical infrastructure against insider and external threats, making the current implementation a robust solution to address modern cybersecurity challenges. By real time visualization operators can quickly assess microgrid health, monitor energy sources and evaluate the efficiency metrics. The integration of Chart.js ensures data is presented in an interactive manner which plays a vital role in energy management.

5 CONCLUSIONS

The development achieved its core objective of enhancing security and operational efficiency. By implementing role-based access, and using Chart.js for real-time data visualization, the project has showed the importance of combining modern web technologies with cybersecurity principles.

The system allows the users to securely monitor and control microgrid operations through a web-based platform ensuring the data integrity and system resilience. The use of MongoDB for data management ensures scalability which enables the system to handle larger datasets as microgrid infrastructure grows.

In summary, the project is characterized by clear advantages in real-time monitoring, security, user a ccess control, scalability and user experience over traditional grid management systems. To this end, the strides forward in security and data representation are notable solutions to some of the pain points caused by grid-connected microgrids. Based on the results, we can say that the system can support grid management in both distributed and hostile environments without any security or resource problems.

5.1 Research Work

By the end of the work we highlight the direction of the future research would take and how the technologies can be implemented in keeping the microgrid secure. While we have incorporated the role based access control mechanism and real-time monitoring but there is scope for the project to improve further. Adding the blockchain and machine learning technologies could help the system to learn from past incidents and prevent the potential threats early which makes the microgrids more resilient.

The microgrid continue to grow in their popularity and size finding the ways to scale the solution efficiently. The future could explore the blockchain to enhance the data security across the larger networks enabling microgrids to smoothly integrate with existing microgrids. Our solution uses standard login method but the multifactor authentication or biometric verification could add an extra layer of security. These features would be valuable for microgrids supporting critical services where unauthorized access can lead to the serious consequences.

With the use of IoT devices there is an opportunity to integrate sensors and the devices into the system seamlessly. This can enable deeper data collection and insights into the grid performance and security vulnerabilities.

5.2 Broader Impact

The provision of security to microgrids works since such essential energy services would continue to be available during disruptions. Such scenarios are critical for infrastructure such as hospitals, data centers, and emergency services hospitals. Apart from that, microgrids are very important for the integration of renewable energy sources into the electrical systems in present and future.

Energy infrastructure buildings are subject to cyber-attacks which may translate to huge losses for the companies directly or indirectly. It is noticeable that reinforcing microgrid cybersecurity aids the protection of not only the physical assets but the economies tied to them, which is paramount in regions that have invested considerably in distributed energy generation. Given that microgrids are becoming more, it is possible that strong physical security will assist people's confidence in these systems. Proving the feasibility and safety of microgrids will provide confidence to the regulators, utility companies and customers in the adoption of the technology which serves to fast-track the deployment of such systems in the market.

6 DECLARATIONS

6.1 Study Limitations

While the research and development of the project presents significant advancements in securing the energy management systems. The limitations encountered during our study that may impact the results and the findings are:

Page No.: 5

Lack of real time data: Lack of real time data during the research was one of the primary limitations faced during the research. The evaluation of system performance in terms of response to real-world cyber threats and operational metrics relied heavily on hard coded data and simulated data. This has limited the extent to which findings can be generalized to actual microgrid environment as real-time operational conditions can vary from the controlled experimental settings.

Integration with Existing Systems: The project did not explore complexities which are involved in integrating the developed solution with existing legacy systems commonly found in operational microgrids.

Resource Constraints: The research was limited by available resources including time preventing more extensive exploration of features and capabilities which could have enhanced the system's security and efficiency.

These limitations highlight the need of further research to address the gaps allowing for a more robust evaluation and improvement in real world applications.

6.2 Acknowledgements

We would like to express our deepest gratitude to those who have supported and guided us throughout this research project. First and foremost, we extend our sincere thanks to our mentor, Mr. N Shankar Sir, Assistant Professor at Anurag University, whose expertise, patience, and encouragement have been invaluable in the development of this project. His insights and constructive feedback greatly enriched our work. We also wish to thank the Computer Science and Engineering Department at Anurag University for providing the resources and facilities necessary to carry out this research.

6.3 Funding source

This project did not require any funding as it was the part of the Academic Course. The work was part of the Department of Computer Science and Engineering, Anurag University.

6.4 Competing Interests

The authors declare that they have no competing interests related to this research. This work was conducted solely for academic purposes, and no financial or personal relationships exist that could have influenced the research outcomes or findings. Furthermore, there were no conflicts of interest with any third parties or institutions during the development and completion of this project.

6.5 Human and Animal Related Study

This study did not involve human participants and no informed consent was required. The research utilized simulated data and publicly available information to ensure ethical compliance without the need for direct human or involvement of animals.

6.6 Ethical Approval

No ethical approval was required as no humans or animals were required in the study of the project.

6.7 Informed Consent

The project did not have any human subjects and this project was done only for academic research purposes. This was done as the part of mini project as part of the college coursework.

REFERENCES

1. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in*

- Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.
- 2. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In *Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1* (pp. 247-257). Springer Singapore.
- 3. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET'S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 738-741). IEEE.
- 4. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., ... & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
- Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Bhargavi, P. J., Alekhya, A., ... & Nandini, K. (2022, November). Cardiovascular Disease Prediction using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 60-66). IEEE.
- 6. Narayana, M. S., Babu, N., Prasad, B. V. V. S., & Kumar, B. S. (2011). Clustering Categorical Data--Study of Mining Tools for Data Labeling. *International Journal of Advanced Research in Computer Science*, 2(4).
- 7. Shankar, G. S., Onyema, E. M., Kavin, B. P., Gude, V., & Prasad, B. S. (2024). Breast Cancer Diagnosis Using Virtualization and Extreme Learning Algorithm Based on Deep Feed Forward Networks. *Biomedical Engineering and Computational Biology*, *15*, 11795972241278907.
- 8. Kulkarni, R., & Prasad, B. S. (2022). Predictive Modeling Of Heart Disease Using Artificial Intelligence. *Journal of Survey in Fisheries Sciences*, 791-801.
- 9. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
- 10. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. *International Journal of Electrical and Computer Engineering (IJECE)*, 11(1), 114-123.
- 11. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, 5(6), 791-803.
- 12. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 13. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2015). Voltage stability enhancement of distribution system using network reconfiguration in the presence of DG. *Distributed Generation & Alternative Energy Journal*, 30(4), 37-54.
- 14. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 15. Madhavi, M., & Murthy, G. V. (2020). Role of certifications in improving the quality of Education in Outcome Based Education. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 16. Varaprasad Rao, M., Srujan Raju, K., Vishnu Murthy, G., & Kavitha Rani, B. (2020). Configure and management of internet of things. In *Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19* (pp. 163-172). Springer Singapore.
- 17. Murthy, G. V. K., Suresh, C. H. V., Sowjankumar, K., & Hanumantharao, B. (2019). Impact of distributed generation on unbalanced radial distribution system. *International Journal of Scientific and Technology Research*, 8(9), 539-542.
- 18. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. *International Journal of Advanced Computer Science and Applications*, 13(7).
- 19. Balram, G., & Kumar, K. K. (2018). Smart farming: Disease detection in crops. *Int. J. Eng. Technol*, 7(2.7), 33-36.
- 20. Balram, G., Rani, G. R., Mansour, S. Y., & Jafar, A. M. (2001). Medical management of otitis media with effusion. *Kuwait Medical Journal*, 33(4), 317-319.
- 21. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 23. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 24. Prasad, PVS Siva, and S. Krishna Mohan Rao. "A Survey on Performance Analysis of ManetsUnder Security Attacks." *network* 6, no. 7 (2017).
- 25. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in

- cloud computing. CSE, Anurag Group of Institutions, Hyderabad, AP, India.
- 26. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 27. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 28. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3).
- 29. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 30. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 31. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 32. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 33. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, 13(1), 159-168.
- 34. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 35. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 36. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 37. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 38. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child's Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.
- 39. Sravan, K., Gunakar Rao, L., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2023, July). Analyze the Quality of Wine Based on Machine Learning Approach. In *International Conference on Data Science and Applications* (pp. 351-360). Singapore: Springer Nature Singapore.
- 40. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 41. Ramineni, K., Harshith Reddy, K., Sai Thrikoteshwara Chary, L., Nikhil, L., & Akanksha, P. (2024, February). Designing an Intelligent Chatbot with Deep Learning: Leveraging FNN Algorithm for Conversational Agents to Improve the Chatbot Performance. In *World Conference on Artificial Intelligence: Advances and Applications* (pp. 143-151). Singapore: Springer Nature Singapore.
- 42. Samya, B., Archana, M., Ramana, T. V., Raju, K. B., & Ramineni, K. (2024, February). Automated Student Assignment Evaluation Based on Information Retrieval and Statistical Techniques. In *Congress on Control, Robotics, and Mechatronics* (pp. 157-167). Singapore: Springer Nature Singapore.
- 43. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 44. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 45. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 46. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 47. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 48. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive

- Binarized spiking marine predators' neural network in financial sector. *Multimedia Tools and Applications*, 83(16), 48761-48797.
- 49. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 50. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 51. Ravinder Reddy, B., & Anil Kumar, A. (2020). Survey on access control mechanisms in cloud environments. In *Advances in Computational Intelligence and Informatics: Proceedings of ICACII* 2019 (pp. 141-149). Springer Singapore.
- 52. Reddy, M. B. R., Nandini, J., & Sathwik, P. S. Y. (2019). Handwritten text recognition and digital text conversion. *International Journal of Trend in Research and Development*, *3*(3), 1826-1827.
- 53. Reddy, B. R., & Adilakshmi, T. (2023). Proof-of-Work for Merkle based Access Tree in Patient Centric Data. *structure*, 14(1).
- Reddy, B. R., Adilakshmi, T., & Kumar, C. P. (2020). Access Control Methods in Cloud Enabledthe Cloud-Enabled Internet of Things. In *Managing Security Services in Heterogenous Networks* (pp. 1-17). CRC Press
- 55. Reddy, M. B. R., Akhil, V., Preetham, G. S., & Poojitha, P. S. (2019). Profile Identification through Face Recognition.
- 56. Dutta, P. K., & Mitra, S. (2021). Application of agricultural drones and IoT to understand food supply chain during post COVID-19. *Agricultural informatics: automation using the IoT and machine learning*, 67-87.
- 57. Matuka, A., Asafo, S. S., Eweke, G. O., Mishra, P., Ray, S., Abotaleb, M., ... & Chowdhury, S. (2022, December). Analysing the impact of COVID-19 outbreak and economic policy uncertainty on stock markets in major affected economies. In *6th Smart Cities Symposium (SCS 2022)* (Vol. 2022, pp. 372-378). IET.
- 58. Saber, M., & Dutta, P. K. (2022). Uniform and Nonuniform Filter Banks Design Based on Fusion Optimization. *Fusion: Practice and Applications*, 9(1), 29-37.
- 59. Mensah, G. B., & Dutta, P. K. (2024). Evaluating if Ghana's Health Institutions and Facilities Act 2011 (Act 829) Sufficiently Addresses Medical Negligence Risks from Integration of Artificial Intelligence Systems. *Mesopotamian Journal of Artificial Intelligence in Healthcare*, 2024, 35-41.
- 60. Aydın, Ö., Karaarslan, E., & Gökçe Narin, N. (2023). Artificial intelligence, vr, ar and metaverse technologies for human resources management. VR, AR and Metaverse Technologies for Human Resources Management (June 15, 2023).
- 61. Thamma, S. R. (2025). Transforming E-Commerce with Pragmatic Advertising Using Machine Learning Techniques.
- 62. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
- 63. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
- 64. Thamma, S. R. T. S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
- 65. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
- 66. Harinath, D., Bandi, M., Patil, A., Murthy, M. R., & Raju, A. V. S. (2024). Enhanced Data Security and Privacy in IoT devices using Blockchain Technology and Quantum Cryptography. *Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793)*, 34(6).
- 67. Harinath, D., Patil, A., Bandi, M., Raju, A. V. S., Murthy, M. R., & Spandana, D. (2024). Smart Farming System—An Efficient technique by Predicting Agriculture Yields Based on Machine Learning. *Technische Sicherheit (Technical Security) Journal*, 24(5), 82-88.
- 68. Masimukku, A. K., Bandi, M., Vallu, S., Patil, A., Vasundhara, K. L., & Murthy, M. R. (2025). Innovative Approaches in Diabetes Management: Leveraging Technology for Improved Healthcare Outcomes. *International Meridian Journal*, 7(7).
- 69. Bandi, M., Masimukku, A. K., Vemula, R., & Vallu, S. (2024). Predictive Analytics in Healthcare: Enhancing Patient Outcomes through Data-Driven Forecasting and Decision-Making. *International Numeric Journal of Machine Learning and Robots*, 8(8), 1-20.
- 70. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, *8*, 23169-23178.
- 71. Ravi, P., Batta, G. S. H. N., & Yaseen, S. (2019). Toxic comment classification. *International Journal of Trend in Scientific Research and Development (IJTSRD)*.
- 72. Pallam, R., Konda, S. P., Manthripragada, L., & Noone, R. A. (2021). Detection of Web Attacks using Ensemble Learning. *learning*, *3*(4), 5.
- 73. Reddy, P. V., Ravi, P., Ganesh, D., Naidu, P. M. K., Vineeth, N., & Sameer, S. (2023, July). Detection and Evaluation of Cervical Cancer by Multiple Instance Learning. In 2023 2nd International Conference on Edge Computing and Applications (ICECAA) (pp. 627-633). IEEE.

- 74. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 75. Chidambaram, R., Balamurugan, M., Senthilkumar, R., Srinivasan, T., Rajmohan, M., Karthick, R., & Abraham, S. (2013). Combining AIET with chemotherapy–lessons learnt from our experience. *J Stem Cells Regen Med*, 9(2), 42-43.
- 76. Karthick, R., & Sundhararajan, M. (2014). Hardware Evaluation of Second Round SHA-3 Candidates Using FPGA. *International Journal of Advanced Research in Computer Science & Technology (IJARCST 2014)*, 2(2).
- 77. Sudhan, K., Deepak, S., & Karthick, R. (2016). SUSTAINABILITY ANALYSIS OF KEVLAR AND BANANA FIBER COMPOSITE.
- 78. Karthick, R., Gopalakrishnan, S., & Ramesh, C. (2020). Mechanical Properties and Characterization of Palmyra Fiber and Polyester Resins Composite. *International Journal of Emerging Trends in Science & Technology*, 6(2).
- 79. Karthick, R., Pandi, M., Dawood, M. S., Prabaharan, A. M., & Selvaprasanth, P. (2021). ADHAAR: A RELIABLE DATA HIDING TECHNIQUES WITH (NNP2) ALGORITHMIC APPROACH USING X-RAY IMAGES. *3C Tecnologia*, 597-608.
- 80. Deepa, R., Karthick, R., Velusamy, J., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. *Computer Standards & Interfaces*, 92, 103934.
- 81. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 82. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 83. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 84. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 85. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 86. Reddy, A. S., Prathap, P., Subbaiah, Y. V., Reddy, K. R., & Yi, J. (2008). Growth and physical behaviour of Zn1-xMgxO films. *Thin Solid Films*, *516*(20), 7084-7087.
- 87. Ambujam, S., Audhya, M., Reddy, A., & Roy, S. (2013). Cutaneous angiosarcoma of the head, neck, and face of the elderly in type 5 skin. *Journal of Cutaneous and Aesthetic Surgery*, 6(1), 45-47.
- 88. Reddy, K. R., Prathap, P., Revathi, N., Reddy, A. S. N., & Miles, R. W. (2009). Mg-composition induced effects on the physical behavior of sprayed Zn1– xMgxO films. *Thin Solid Films*, 518(4), 1275-1278.
- 89. Prathap, P., Reddy, A. S., Reddy, G. R., Miles, R. W., & Reddy, K. R. (2010). Characterization of novel sprayed Zn1– xMgxO films for photovoltaic application. *Solar energy materials and solar cells*, 94(9), 1434-1436.
- 90. Babbar, R., Kaur, A., Vanya, Arora, R., Gupta, J. K., Wal, P., ... & Behl, T. (2024). Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. *Current Pharmaceutical Design*, 30(24), 1880-1893.
- 91. Lokhande, M., Kalpanadevi, D., Kate, V., Tripathi, A. K., & Bethapudi, P. (2023). Study of Computer Vision Applications in Healthcare Industry 4.0. In *Healthcare Industry 4.0* (pp. 151-166). CRC Press.
- 92. Parganiha, R., Tripathi, A., Prathyusha, S., Baghel, P., Lanjhiyana, S., Lanjhiyana, S., ... & Sarkar, D. (2022). A review of plants for hepatic disorders. *J. Complement. Med. Res*, *13*(46), 10-5455.
- 93. Tripathi, A. K., Soni, R., & Verma, S. (2022). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mimosa pudica (linn.). *Research Journal of Pharmacy and Technology*, 15(9), 4293-4299.
- 94. Tripathi, A. K., Dwivedi, C. P., Bansal, P., Pradhan, D. K., Parganiha, R., & Sahu, D. An Ethnoveterinary Important Plant Terminalia Arjuna. *International Journal of Health Sciences*, (II), 10601-10607.
- 95. Mishra, S., Grewal, J., Wal, P., Bhivshet, G. U., Tripathi, A. K., & Walia, V. (2024). Therapeutic potential of vasopressin in the treatment of neurological disorders. *Peptides*, *174*, 171166.
- 96. Koliqi, R., Fathima, A., Tripathi, A. K., Sohi, N., Jesudasan, R. E., & Mahapatra, C. (2023). Innovative and Effective Machine Learning-Based Method to Analyze Alcoholic Brain Activity with Nonlinear Dynamics and Electroencephalography Data. *SN Computer Science*, *5*(1), 113.
- 97. Tripathi, A. K., Diwedi, P., Kumar, N., Yadav, B. K., & Rathod, D. (2022). Trigonella Foenum Grecum L. Seed (Fenugreek) Pharmacological Effects on Cardiovascular and Stress Associated Disease. *NeuroQuantology*, 20(8), 4599.
- 98. Sahu, P., Sharma, G., Verma, V. S., Mishra, A., Deshmukh, N., Pandey, A., ... & Chauhan, P. (2022). Statistical optimization of microwave assisted acrylamide grafting of Linum usitatissimum Gum. *NeuroQuantology*, 20(11), 4008.
- 99. Biswas, D., Sharma, G., Pandey, A., Tripathi, A. K., Pandey, A., Sahu, P., ... & Chauhan, P. (2022). Magnetic Nanosphere: Promising approach to deliver the drug to the site of action. *NeuroQuantology*, 20(11), 4038.

- 100. Ramya, S., Devi, R. S., Pandian, P. S., Suguna, G., Suganya, R., & Manimozhi, N. (2023). Analyzing Big Data challenges and security issues in data privacy. *International Research Journal of Modernization in Engineering Technology and Science*, 5(2023), 421-428.
- 101. Pandian, P. S., & Srinivasan, S. (2016). A Unified Model for Preprocessing and Clustering Technique for Web Usage Mining. *Journal of Multiple-Valued Logic & Soft Computing*, 26.
- 102. Muthukumar, K. K. M., & Pandian, S. Analyzing and Improving the Performance of Decision Database with Enhanced Momentous Data Types. *Asia Journal of Information Technology*, *16*(9), 699-705.
- 103. Pandian, P. S. (2023). RETRACTED: Adopting security checks in business transactions using formaloriented analysis processes for entrepreneurial students. *International Journal of Electrical Engineering & Education*, 60(1_suppl), 1357-1365.
- 104. Karthick, R., & Pragasam, J. (2019). D "Design of Low Power MPSoC Architecture using DR Method" Asian Journal of Applied Science and Technology (AJAST) Volume 3, Issue 2.
- 105. Karthick, R. (2018). Deep Learning For Age Group Classification System. *International Journal Of Advances In Signal And Image Sciences*, 4(2), 16-22.
- 106. Karthick, R., Akram, M., & Selvaprasanth, P. (2020). A Geographical Review: Novel Coronavirus (COVID-19) Pandemic. A Geographical Review: Novel Coronavirus (COVID-19) Pandemic (October 16, 2020). Asian Journal of Applied Science and Technology (AJAST)(Quarterly International Journal) Volume, 4, 44-50.
- 107. Karthick, R. (2018). Integrated System For Regional Navigator And Seasons Management. *Journal of Global Research in Computer Science*, 9(4), 11-15.
- 108. Kavitha, N., Soundar, K. R., Karthick, R., & Kohila, J. (2024). Automatic video captioning using tree hierarchical deep convolutional neural network and ASRNN-bi-directional LSTM. *Computing*, 106(11), 3691-3709.
- 109. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 110. Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 111. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).
- 112. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
- 113. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 114. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 115. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 116. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 117. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 118. Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
- 119. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 120. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 121. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 122. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 123. Arora, P., & Bhardwaj, S. (2017). Investigation and Evaluation of Strategic Approaches Critically before Approving Cloud Computing Service Frameworks.
- 124. Arora, P., & Bhardwaj, S. (2017). Enhancing Security using Knowledge Discovery and Data Mining Methods in Cloud Computing.
- 125. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. *machine learning*, 8(7).
- 126. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 127. Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
- 128. Sharma, S., & Dutta, N. (2018). Development of New Smart City Applications using Blockchain Technology and Cybersecurity Utilisation. *Development*, 7(11).

- 129. Sharma, S., & Dutta, N. (2017). Classification and Feature Extraction in Artificial Intelligence-based Threat Detection using Analysing Methods.
- 130. Sharma, S., & Dutta, N. (2017). Development of Attractive Protection through Cyberattack Moderation and Traffic Impact Analysis for Connected Automated Vehicles. *Development*, 4(2).
- 131. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 132. Sharma, S., & Dutta, N. (2015). Evaluation of REST Web Service Descriptions for Graph-based Service Discovery with a Hypermedia Focus. *Evaluation*, 2(5).
- 133. Sharma, S., & Dutta, N. (2015). Cybersecurity Vulnerability Management using Novel Artificial Intelligence and Machine Learning Techniques.
- 134. Sharma, S., & Dutta, N. (2015). Distributed DNN-based Middleware for Cyberattack Detection in the Smart IOT Ecosystem: A Novel Framework and Performance Evaluation Technique.
- 135. Sakshi, S. (2024). A Large-Scale Empirical Study Identifying Practitioners' Perspectives on Challenges in Docker Development: Analysis using Stack Overflow.
- 136. Sakshi, S. (2023). Advancements and Applications of Generative Artificial Intelligence and show the Experimental Evidence on the Productivity Effects using Generative Artificial Intelligence.
- 137. Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
- 138.Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
- 139.Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and Optimisation.
- 140.Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
- 141. Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
- 142.Bhat, S. (2023). Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
- 143. Bhat, S. (2019). Data Centre Cooling Technology's Effect on Turbo-Mode Efficiency.
- 144. Bhat, S. (2018). The Impact of Data Centre Cooling Technology on Turbo-Mode Efficiency.
- 145. Bhat, S. (2015). Technology for Chemical Industry Mixing and Processing. *Technology*, 2(2).
- 146. Bauri, K. P., & Sarkar, A. (2016). Flow and scour around vertical submerged structures. *Sādhanā*, 41, 1039-1053.
- 147. Bauri, K. P., & Sarkar, A. (2020). Turbulent bursting events within equilibrium scour holes around aligned submerged cylinder. *Journal of Turbulence*, 21(2), 53-83.
- 148. Bauri, K. P., & Sarkar, A. (2019). Turbulent burst-sweep events around fully submerged vertical square cylinder over plane bed. *Environmental Fluid Mechanics*, 19, 645-666.
- 149. Bauri, K. P. (2022). Coherent structures around submerged circular and square cylinders due to change of orientation angle in steady current over plane bed. *Acta Geophysica*, 70(5), 2223-2250.
- 150. Polamarasetti, A. (2024, November). Research developments, trends and challenges on the rise of machine learning for detection and classification of malware. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-5). IEEE.
- 151. Polamarasetti, A. (2024, November). Machine learning techniques analysis to Efficient resource provisioning for elastic cloud services. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.
- 152. Polamarasetti, A. (2024, November). Role of Artificial Intelligence and Machine Learning to Enhancing Cloud Security. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.
- 153. Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Echoes in Pixels: The intersection of Image Processing and Sound detection through the lens of AI and Ml. *International Journal of Development Research*, *10*(08), 39735-39743.
- 154. Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow's Ailments: How AI/ML Is Transforming Disease Forecasting. *ESP Journal of Engineering & Technology Advancements*, *I*(2), 188-200.
- 155. Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. *Available at SSRN 4977121*.
- 156. Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. *Available at SSRN 4977121*.
- 157. Patra, G. K., Rajaram, S. K., Boddapati, V. N., Kuraku, C., & Gollangi, H. K. (2022). Advancing Digital Payment Systems: Combining AI, Big Data, and Biometric Authentication for Enhanced Security. *International Journal of Engineering and Computer Science*, 11(08), 10-18535.
- 158. Patra, G. K., Rajaram, S. K., & Boddapati, V. N. (2019). Ai And Big Data In Digital Payments: A

- Comprehensive Model For Secure Biometric Authentication. Educational Administration: Theory and Practice.
- 159. Boddapati, V. N., Galla, E. P., Sunkara, J. R., Bauskar, S., Patra, G. K., Kuraku, C., & Madhavaram, C. R. (2021). Harnessing the Power of Big Data: The Evolution of AI and Machine Learning in Modern Times. *ESP Journal of Engineering & Technology Advancements*, 1(2), 134-146.
- 160. Singh, K., & Neeru, N. (2023). A COMPREHENSIVE STUDY OF THE IOT ATTACKS ON DIFFERENT LAYERS. *Journal Punjab Academy of Sciences*, 23, 140-155.
- 161. Singh, K., & Neeru, N. (2023). A COMPREHENSIVE STUDY OF THE IOT ATTACKS ON DIFFERENT LAYERS. *Journal Punjab Academy of Sciences*, 23, 140-155.
- 162. Ravi, P., Haritha, D., & Obulesh, A. (2022). Average Iceberg Queries Computation Using Bitmap Indexes On Health Care Data. *Journal of Pharmaceutical Negative Results*, 3724-3731.
- 163. Singh, V., Sharma, M. P., Jayapriya, K., Kumar, B. K., Chander, M. A. R. N., & Kumar, B. R. (2023). Service quality, customer satisfaction and customer loyalty: A comprehensive literature review. *Journal of Survey in Fisheries Sciences*, 10(4S), 3457-3464.