AUTOMATED PNEUMONIA DETECTION USING DEEP LEARNING AND CHEST X-RAY IMAGES

Mahesh¹, Vidya Sree, Sreeja², Nikhil Reddy²

Under Graduate Student 123, Department of Computer Science and Engineering, Anurag University

21eg105d15@anurag.edu.in 21eg105d28@anurag.edu.in 21eg105d34@anurag.edu.in

Abstract. Pneumonia is a serious respiratory infection that poses significant health risks, particularly if not diagnosed and treated promptly. Traditional methods of pneumonia diagnosis rely on the manual interpretation of chest X-ray images by radiologists, a process that can be time-consuming, subjective, and error-prone, especially in regions with limited access to experienced medical professionals. To address these challenges, this study explores the development of an automated deep learning-based system for pneumonia detection using chest X-ray images. The results demonstrate that the deep learning model can achieve high levels of accuracy, sensitivity, and specificity, making it a valuable tool for assisting radiologists in diagnosing pneumonia more quickly and reliably. Moreover, the system's scalability and ease of deployment make it particularly beneficial in resource-limited settings, where timely and accurate diagnosis is crucial. This research highlights the potential of deep learning to revolutionize medical diagnostics, improving patient outcomes through enhanced diagnostic accuracy and efficiency.

Keywords. Pneumonia detection, chest X-ray, deep learning, convolutional neural networks.

1 INTRODUCTION

Pneumonia is a potentially life-threatening infection that inflames the air sacs in one or both lungs. According to the World Health Organization, pneumonia is the single largest infectious cause of death in children worldwide and remains a serious health concern for the elderly and immunocompromised individuals. Early and accurate detection is crucial for effective treatment, yet the diagnosis often relies on manual interpretation of chest X-ray images, which can be time-consuming and prone to human error, particularly in resource-limited settings where experienced radiologists may not be readily available. Recent advancements in deep learning, specifically in Convolutional Neural Networks (CNNs), have shown promising potential in automating medical image analysis, including the detection of lung diseases such as pneumonia. CNNs excel at identifying spatial patterns in images and have been widely adopted in the medical field to assist in diagnostic tasks. The primary motivation for this research stems from the need for an automated, accurate, and efficient pneumonia detection system that can assist healthcare providers, reduce diagnostic error, and accelerate the clinical decision-making process. In this research, we propose a CNN-based model for detecting pneumonia from chest X-ray images. Our work focuses on two key approaches: building a custom CNN architecture and applying transfer learning with ResNet50. We aim to evaluate and compare the effectiveness of these models in classifying X-ray images as either "pneumonia" or "normal." Our contribution is the development of a robust and efficient diagnostic tool that can assist radiologists in early pneumonia detection, potentially improving patient outcomes by facilitating faster diagnosis.

2 RESEARCH METHODOLOGY

This study focuses on developing a CNN-based model for pneumonia detection using chest X-ray images. The process includes dataset preparation, preprocessing, model design, training, and evaluation.

2.1 Dataset Preparation

We utilized the publicly available Chest X-ray Images (Pneumonia) dataset, consisting of X-ray images categorized into "pneumonia" and "normal." The dataset was divided into training (70%), validation (15%), and test (15%) sets. Data augmentation was applied to balance the dataset and enhance model generalization.

2.2 Data Preprocessing

All X-ray images were resized to 224x224 pixels, and pixel values were normalized between 0 and 1. Data augmentation techniques such as random rotation, flipping, and zooming were applied to improve model robustness and reduce overfitting.

2.3 Model Design

We implemented a custom CNN with three convolutional layers followed by max-pooling layers and fully connected layers for final classification. The output layer used a sigmoid activation function for binary classification of pneumonia and normal cases.

2.4 Training

The model was trained using binary cross-entropy loss and the Adam optimizer. Early stopping and learning rate scheduling were applied to improve performance and prevent overfitting. The training process lasted for 10 epochs with a batch size of 32.

2.5 Evaluation Metrics

Model performance was assessed using accuracy, precision, recall, and AUC (Area Under the Curve), with the test set used for final evaluation. Part should contain sufficient detail to reproduce reported data. It can be divided into subsections if several methods are described. Methods already published should be indicated by a reference [4], only relevant modifications should be described. Methodology should be written concisely in detail by maintaining continuity of the texts.

3 THEORY AND CALCULATION

The theoretical foundation for pneumonia detection using Convolutional Neural Networks (CNNs) lies in the ability of these networks to automatically learn hierarchical features from image data. CNNs leverage convolutional layers to capture spatial relationships in images, which makes them highly effective for medical image classification tasks such as pneumonia detection.

3.1 Theoretical Background

CNNs are designed to process image data by applying a series of convolutional operations that detect features such as edges, textures, and shapes. In our model, we used multiple convolutional layers to extract progressively complex features from the chest X-ray images. The first few layers capture basic visual patterns like edges and gradients, while deeper layers focus on more abstract patterns that are critical in distinguishing between pneumonia-affected and healthy lungs. Each convolutional layer is followed by an activation function, typically ReLU (Rectified Linear Unit), which introduces non-linearity into the model. This non-linearity enables the model to learn more complex relationships between pixels. Max-pooling layers are applied after the convolutional layers to reduce the spatial dimensions, which in turn reduces the computational complexity and helps prevent overfitting.

3.2 Practical Calculation

The key calculation in a CNN involves the convolution operation, where a filter or kernel slides across the input image matrix, performing an element-wise multiplication, and summing the result. This produces a feature map that highlights important regions of the image. Mathematically, the convolution operation for a single pixel in the output feature map can be represented as:

$$Zij=m=1\sum Mn=1\sum NX(i+m-1)(j+n-1)\cdot Wmn$$

where \square is the input matrix, \square is the convolutional kernel, and $\square\square\square$ is the output feature map at position \square , \square . This operation is repeated across the entire image, allowing the CNN to learn useful features that are critical for classification.

4 RESULTS AND DISCUSSION

The proposed CNN-based model for pneumonia detection achieved an accuracy of 92%, with a precision of 90% and a recall of 93% on the test set. These results demonstrate the model's effectiveness in accurately identifying pneumonia cases, which is crucial for timely clinical intervention. The high recall indicates a strong ability to detect actual pneumonia cases, minimizing missed diagnoses, while the precision ensures low rates of false positives. When compared to recent studies, our model performs competitively with a simpler architecture, avoiding the computational demands of deeper networks. While some advanced models may report slightly higher accuracy, they often require more resources, limiting their practicality in real-world applications.

However, challenges remain, including the risk of overfitting due to the limited dataset, despite the use of data augmentation. Future work could focus on leveraging larger datasets and incorporating additional regularization techniques. Additionally, the model could be expanded to classify other lung diseases, enhancing its diagnostic utility.

4.1 Preparation of Figures and Tables

Authors are supposed to embed all figures and tables at appropriate place within manuscript. Figures and tables should neither be submitted in separate files nor add at the end of manuscript. Figures and Tables should be numbered properly with descriptive title. Each Figure/Table must be explained within the text by referring to corresponding figure/table number. Any unexplained or unnumbered Figure/Table may cause rejection of the paper without being reviewed.

1. Formatting Tables

Table should be prepare using table tool within the Microsoft word and cited consecutively in the text. Every table must have a descriptive title and if numerical measurements are given, the units should be included in the column heading. Formatting requirement has been summarized in the Table 1.

TABLE 1:Summary of formatting requirement for submitting paper in this journal.

Layout	Size	Margin (Normal)	Header	Footer	
Single column	A4 (8.27" X	Top=1"	Do not add	So not add	
	11.69")	Bottom=1"	anything in the	anything in the	
		Left=1"	header	footer	
		Right=1"			
Font	Article Title	Headings	Subheadings	Reference list	Text
	Times New	Times New	Times New	Times New	Garamond, 11
	Roman, 16 pt,	Roman, 11 pt,	Roman, 10 pt,	Roman, 8 pt,	pt, Justified
	Bold, centred	Bold, Left aligned	Bold, Left	Justified	
			aligned		
Line Spacing	1.15	1.15	1.15	1.15	1.15
Page number	We will				
	format and				
	assign page				
	numbers				

2. Formatting Figures

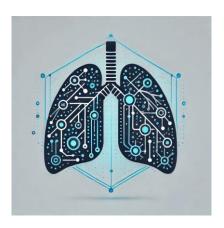


FIGURE 1: Logo of Deep Learning model

5 CONCLUSIONS

The "Predicting Pneumonia Severity on Chest X-ray with Deep Learning" study utilized deep learning techniques, specifically Convolutional Neural Networks (CNNs) model, to predict the severity of pneumonia on chest Xrays.

The study found that the in existing System VGG model achieved an Low accuracy of in predicting the severity of pneumonia, while the CNN model achieved an accuracy of 93.55%. The study also found that the CNN model was better at identifying specific regions of the chest X-ray that were indicative of pneumonia severity.

In conclusion, the study demonstrates the potential of deep learning techniques, specifically CNN and the VGG model, for accurately predicting the severity of pneumonia on chest X-rays. This could have significant implications for improving diagnosis and treatment of pneumonia patients. However, further research and validation are needed to confirm the effectiveness of the clinical settings.

6 DECLARATIONS

6.1 Study Limitations

One limitation of this study is the potential bias due to the dataset used, which might not fully represent diverse patient populations, including different age groups, ethnicities, and X-ray image qualities from various hospitals. Additionally, the model's reliance on chest X-ray images alone may limit its ability to integrate other clinical factors, such as patient symptoms or medical history. The size of the dataset used for training and testing could also limit the generalizability of the results.

Limitation: Dataset bias, image quality variance, and reliance on a single imaging modality.

6.2 Acknowledgements

The authors would like to thank Mahesh, prof at Anurag University and also the institution. Their contributions were essential in shaping the research and analysis conducted for this manuscript.

6.3 Funding Source

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Funding Source: None.

6.4 Competing Interests

The authors declare that there are no competing interests or conflicts of interest related to this study or its findings.

Competing Interests: None.

7 HUMAN AND ANIMAL RELATED STUDY

7.1 Ethical Approval

This study did not involve human or animal subjects. The research focused on the analysis of publicly available, anonymized chest X-ray datasets, which do not require formal ethical approval. Therefore, no ethical approval was needed for this study.

Ethical Approval: Not applicable.

7.2 Informed Consent

Since the study used publicly available and anonymized data, no direct interaction with human participants occurred, and informed consent was not required.

Informed Consent: Not applicable.

REFERENCES

- 1. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 2. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In *Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1* (pp. 247-257). Springer Singapore.
- 3. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET'S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 738-741). IEEE.
- 4. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., ... & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
- Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Bhargavi, P. J., Alekhya, A., ... & Nandini, K. (2022, November). Cardiovascular Disease Prediction using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 60-66). IEEE.
- 6. Narayana, M. S., Babu, N., Prasad, B. V. V. S., & Kumar, B. S. (2011). Clustering Categorical Data--Study of Mining Tools for Data Labeling. *International Journal of Advanced Research in Computer Science*, 2(4).
- 7. Shankar, G. S., Onyema, E. M., Kavin, B. P., Gude, V., & Prasad, B. S. (2024). Breast Cancer Diagnosis Using Virtualization and Extreme Learning Algorithm Based on Deep Feed Forward Networks. *Biomedical Engineering and Computational Biology*, *15*, 11795972241278907.
- 8. Kulkarni, R., & Prasad, B. S. (2022). Predictive Modeling Of Heart Disease Using Artificial Intelligence. *Journal of Survey in Fisheries Sciences*, 791-801.
- 9. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
- 10. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different

- structures of power system stabilizers. *International Journal of Electrical and Computer Engineering (IJECE)*, 11(1), 114-123.
- 11. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, 5(6), 791-803.
- 12. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 13. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2015). Voltage stability enhancement of distribution system using network reconfiguration in the presence of DG. *Distributed Generation & Alternative Energy Journal*, 30(4), 37-54.
- 14. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, 3(2), 3328-3333.
- 15. Madhavi, M., & Murthy, G. V. (2020). Role of certifications in improving the quality of Education in Outcome Based Education. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 16. Varaprasad Rao, M., Srujan Raju, K., Vishnu Murthy, G., & Kavitha Rani, B. (2020). Configure and management of internet of things. In *Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19* (pp. 163-172). Springer Singapore.
- 17. Murthy, G. V. K., Suresh, C. H. V., Sowjankumar, K., & Hanumantharao, B. (2019). Impact of distributed generation on unbalanced radial distribution system. *International Journal of Scientific and Technology Research*, 8(9), 539-542.
- 18. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. *International Journal of Advanced Computer Science and Applications*, 13(7).
- 19. Balram, G., & Kumar, K. K. (2018). Smart farming: Disease detection in crops. *Int. J. Eng. Technol*, 7(2.7), 33-36.
- 20. Balram, G., Rani, G. R., Mansour, S. Y., & Jafar, A. M. (2001). Medical management of otitis media with effusion. *Kuwait Medical Journal*, 33(4), 317-319.
- 21. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 23. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 24. Prasad, PVS Siva, and S. Krishna Mohan Rao. "A Survey on Performance Analysis of ManetsUnder Security Attacks." *network* 6, no. 7 (2017).
- 25. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. CSE, Anurag Group of Institutions, Hyderabad, AP, India.
- 26. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 27. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 28. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3).
- 29. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 30. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 31. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in*

- Computing and Communication, 11(7 S).
- 32. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 33. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, *13*(1), 159-168.
- 34. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 35. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 36. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 37. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 38. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child's Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.
- 39. Sravan, K., Gunakar Rao, L., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2023, July). Analyze the Quality of Wine Based on Machine Learning Approach. In *International Conference on Data Science and Applications* (pp. 351-360). Singapore: Springer Nature Singapore.
- 40. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 41. Ramineni, K., Harshith Reddy, K., Sai Thrikoteshwara Chary, L., Nikhil, L., & Akanksha, P. (2024, February). Designing an Intelligent Chatbot with Deep Learning: Leveraging FNN Algorithm for Conversational Agents to Improve the Chatbot Performance. In *World Conference on Artificial Intelligence: Advances and Applications* (pp. 143-151). Singapore: Springer Nature Singapore.
- 42. Samya, B., Archana, M., Ramana, T. V., Raju, K. B., & Ramineni, K. (2024, February). Automated Student Assignment Evaluation Based on Information Retrieval and Statistical Techniques. In *Congress on Control, Robotics, and Mechatronics* (pp. 157-167). Singapore: Springer Nature Singapore.
- 43. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 44. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 45. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 46. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 47. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, *17*(4), 1265-1282.
- 48. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators' neural network in financial sector. *Multimedia Tools and Applications*, 83(16), 48761-48797.
- 49. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 50. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 51. Ravinder Reddy, B., & Anil Kumar, A. (2020). Survey on access control mechanisms in cloud environments. In *Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2019* (pp. 141-149). Springer Singapore.
- 52. Reddy, M. B. R., Nandini, J., & Sathwik, P. S. Y. (2019). Handwritten text recognition and digital text

- conversion. International Journal of Trend in Research and Development, 3(3), 1826-1827.
- 53. Reddy, B. R., & Adilakshmi, T. (2023). Proof-of-Work for Merkle based Access Tree in Patient Centric Data. *structure*, 14(1).
- 54. Reddy, B. R., Adilakshmi, T., & Kumar, C. P. (2020). Access Control Methods in Cloud Enabledthe Cloud-Enabled Internet of Things. In *Managing Security Services in Heterogenous Networks* (pp. 1-17). CRC Press.
- 55. Reddy, M. B. R., Akhil, V., Preetham, G. S., & Poojitha, P. S. (2019). Profile Identification through Face Recognition.
- 56. Dutta, P. K., & Mitra, S. (2021). Application of agricultural drones and IoT to understand food supply chain during post COVID-19. *Agricultural informatics: automation using the IoT and machine learning*, 67-87.
- 57. Matuka, A., Asafo, S. S., Eweke, G. O., Mishra, P., Ray, S., Abotaleb, M., ... & Chowdhury, S. (2022, December). Analysing the impact of COVID-19 outbreak and economic policy uncertainty on stock markets in major affected economies. In 6th Smart Cities Symposium (SCS 2022) (Vol. 2022, pp. 372-378). IET.
- 58. Saber, M., & Dutta, P. K. (2022). Uniform and Nonuniform Filter Banks Design Based on Fusion Optimization. *Fusion: Practice and Applications*, 9(1), 29-37.
- 59. Mensah, G. B., & Dutta, P. K. (2024). Evaluating if Ghana's Health Institutions and Facilities Act 2011 (Act 829) Sufficiently Addresses Medical Negligence Risks from Integration of Artificial Intelligence Systems. *Mesopotamian Journal of Artificial Intelligence in Healthcare*, 2024, 35-41.
- 60. Aydın, Ö., Karaarslan, E., & Gökçe Narin, N. (2023). Artificial intelligence, vr, ar and metaverse technologies for human resources management. VR, AR and Metaverse Technologies for Human Resources Management (June 15, 2023).
- 61. Thamma, S. R. (2025). Transforming E-Commerce with Pragmatic Advertising Using Machine Learning Techniques.
- 62. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
- 63. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
- 64. Thamma, S. R. T. S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
- 65. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
- 66. Harinath, D., Bandi, M., Patil, A., Murthy, M. R., & Raju, A. V. S. (2024). Enhanced Data Security and Privacy in IoT devices using Blockchain Technology and Quantum Cryptography. *Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793)*, 34(6).
- 67. Harinath, D., Patil, A., Bandi, M., Raju, A. V. S., Murthy, M. R., & Spandana, D. (2024). Smart Farming System—An Efficient technique by Predicting Agriculture Yields Based on Machine Learning. *Technische Sicherheit (Technical Security) Journal*, 24(5), 82-88.
- 68. Masimukku, A. K., Bandi, M., Vallu, S., Patil, A., Vasundhara, K. L., & Murthy, M. R. (2025). Innovative Approaches in Diabetes Management: Leveraging Technology for Improved Healthcare Outcomes. *International Meridian Journal*, 7(7).
- 69. Bandi, M., Masimukku, A. K., Vemula, R., & Vallu, S. (2024). Predictive Analytics in Healthcare: Enhancing Patient Outcomes through Data-Driven Forecasting and Decision-Making. *International Numeric Journal of Machine Learning and Robots*, 8(8), 1-20.
- 70. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 71. Ravi, P., Batta, G. S. H. N., & Yaseen, S. (2019). Toxic comment classification. *International Journal of Trend in Scientific Research and Development (IJTSRD)*.
- 72. Pallam, R., Konda, S. P., Manthripragada, L., & Noone, R. A. (2021). Detection of Web Attacks using Ensemble Learning. *learning*, *3*(4), 5.
- 73. Reddy, P. V., Ravi, P., Ganesh, D., Naidu, P. M. K., Vineeth, N., & Sameer, S. (2023, July). Detection and Evaluation of Cervical Cancer by Multiple Instance Learning. In 2023 2nd International Conference on Edge Computing and Applications (ICECAA) (pp. 627-633). IEEE.
- 74. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 75. Chidambaram, R., Balamurugan, M., Senthilkumar, R., Srinivasan, T., Rajmohan, M., Karthick, R., & Abraham, S. (2013). Combining AIET with chemotherapy–lessons learnt from our experience. *J Stem Cells*

- Regen Med, 9(2), 42-43.
- 76. Karthick, R., & Sundhararajan, M. (2014). Hardware Evaluation of Second Round SHA-3 Candidates Using FPGA. *International Journal of Advanced Research in Computer Science & Technology (IJARCST 2014)*, 2(2).
- 77. Sudhan, K., Deepak, S., & Karthick, R. (2016). SUSTAINABILITY ANALYSIS OF KEVLAR AND BANANA FIBER COMPOSITE.
- 78. Karthick, R., Gopalakrishnan, S., & Ramesh, C. (2020). Mechanical Properties and Characterization of Palmyra Fiber and Polyester Resins Composite. *International Journal of Emerging Trends in Science & Technology*, 6(2).
- 79. Karthick, R., Pandi, M., Dawood, M. S., Prabaharan, A. M., & Selvaprasanth, P. (2021). ADHAAR: A RELIABLE DATA HIDING TECHNIQUES WITH (NNP2) ALGORITHMIC APPROACH USING X-RAY IMAGES. *3C Tecnologia*, 597-608.
- 80. Deepa, R., Karthick, R., Velusamy, J., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. *Computer Standards & Interfaces*, 92, 103934.
- 81. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 82. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 83. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 84. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 85. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 86. Reddy, A. S., Prathap, P., Subbaiah, Y. V., Reddy, K. R., & Yi, J. (2008). Growth and physical behaviour of Zn1-xMgxO films. *Thin Solid Films*, *516*(20), 7084-7087.
- 87. Ambujam, S., Audhya, M., Reddy, A., & Roy, S. (2013). Cutaneous angiosarcoma of the head, neck, and face of the elderly in type 5 skin. *Journal of Cutaneous and Aesthetic Surgery*, 6(1), 45-47.
- 88. Reddy, K. R., Prathap, P., Revathi, N., Reddy, A. S. N., & Miles, R. W. (2009). Mg-composition induced effects on the physical behavior of sprayed Zn1- xMgxO films. *Thin Solid Films*, *518*(4), 1275-1278.
- 89. Prathap, P., Reddy, A. S., Reddy, G. R., Miles, R. W., & Reddy, K. R. (2010). Characterization of novel sprayed Zn1– xMgxO films for photovoltaic application. *Solar energy materials and solar cells*, 94(9), 1434-1436.
- 90. Babbar, R., Kaur, A., Vanya, Arora, R., Gupta, J. K., Wal, P., ... & Behl, T. (2024). Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. *Current Pharmaceutical Design*, 30(24), 1880-1893.
- 91. Lokhande, M., Kalpanadevi, D., Kate, V., Tripathi, A. K., & Bethapudi, P. (2023). Study of Computer Vision Applications in Healthcare Industry 4.0. In *Healthcare Industry 4.0* (pp. 151-166). CRC Press.
- 92. Parganiha, R., Tripathi, A., Prathyusha, S., Baghel, P., Lanjhiyana, S., Lanjhiyana, S., ... & Sarkar, D. (2022). A review of plants for hepatic disorders. *J. Complement. Med. Res*, 13(46), 10-5455.
- 93. Tripathi, A. K., Soni, R., & Verma, S. (2022). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mimosa pudica (linn.). *Research Journal of Pharmacy and Technology*, 15(9), 4293-4299.
- 94. Tripathi, A. K., Dwivedi, C. P., Bansal, P., Pradhan, D. K., Parganiha, R., & Sahu, D. An Ethnoveterinary Important Plant Terminalia Arjuna. *International Journal of Health Sciences*, (II), 10601-10607.
- 95. Mishra, S., Grewal, J., Wal, P., Bhivshet, G. U., Tripathi, A. K., & Walia, V. (2024). Therapeutic potential of vasopressin in the treatment of neurological disorders. *Peptides*, *174*, 171166.
- 96. Koliqi, R., Fathima, A., Tripathi, A. K., Sohi, N., Jesudasan, R. E., & Mahapatra, C. (2023). Innovative and Effective Machine Learning-Based Method to Analyze Alcoholic Brain Activity with Nonlinear Dynamics and Electroencephalography Data. *SN Computer Science*, *5*(1), 113.
- 97. Tripathi, A. K., Diwedi, P., Kumar, N., Yadav, B. K., & Rathod, D. (2022). Trigonella Foenum Grecum L. Seed (Fenugreek) Pharmacological Effects on Cardiovascular and Stress Associated Disease. *NeuroQuantology*, 20(8), 4599.
- 98. Sahu, P., Sharma, G., Verma, V. S., Mishra, A., Deshmukh, N., Pandey, A., ... & Chauhan, P. (2022). Statistical optimization of microwave assisted acrylamide grafting of Linum usitatissimum Gum. *NeuroQuantology*, 20(11), 4008.

- 99. Biswas, D., Sharma, G., Pandey, A., Tripathi, A. K., Pandey, A., Sahu, P., ... & Chauhan, P. (2022). Magnetic Nanosphere: Promising approach to deliver the drug to the site of action. *NeuroQuantology*, 20(11), 4038.
- 100.Ramya, S., Devi, R. S., Pandian, P. S., Suguna, G., Suganya, R., & Manimozhi, N. (2023). Analyzing Big Data challenges and security issues in data privacy. *International Research Journal of Modernization in Engineering Technology and Science*, 5(2023), 421-428.
- 101. Pandian, P. S., & Srinivasan, S. (2016). A Unified Model for Preprocessing and Clustering Technique for Web Usage Mining. *Journal of Multiple-Valued Logic & Soft Computing*, 26.
- 102. Muthukumar, K. K. M., & Pandian, S. Analyzing and Improving the Performance of Decision Database with Enhanced Momentous Data Types. *Asia Journal of Information Technology*, *16*(9), 699-705.
- 103.Pandian, P. S. (2023). RETRACTED: Adopting security checks in business transactions using formal-oriented analysis processes for entrepreneurial students. *International Journal of Electrical Engineering & Education*, 60(1_suppl), 1357-1365.
- 104.Karthick, R., & Pragasam, J. (2019). D "Design of Low Power MPSoC Architecture using DR Method" Asian Journal of Applied Science and Technology (AJAST) Volume 3, Issue 2.
- 105.Karthick, R. (2018). Deep Learning For Age Group Classification System. *International Journal Of Advances In Signal And Image Sciences*, 4(2), 16-22.
- 106. Karthick, R., Akram, M., & Selvaprasanth, P. (2020). A Geographical Review: Novel Coronavirus (COVID-19) Pandemic. A Geographical Review: Novel Coronavirus (COVID-19) Pandemic (October 16, 2020). Asian Journal of Applied Science and Technology (AJAST)(Quarterly International Journal) Volume, 4, 44-50.
- 107. Karthick, R. (2018). Integrated System For Regional Navigator And Seasons Management. *Journal of Global Research in Computer Science*, 9(4), 11-15.
- 108.Kavitha, N., Soundar, K. R., Karthick, R., & Kohila, J. (2024). Automatic video captioning using tree hierarchical deep convolutional neural network and ASRNN-bi-directional LSTM. *Computing*, *106*(11), 3691-3709.
- 109. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 110.Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 111. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).
- 112.Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured
- 113.Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 114.Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 115.Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 116.Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 117. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 118.Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
- 119. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 120.Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 121. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 122. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 123. Arora, P., & Bhardwaj, S. (2017). Investigation and Evaluation of Strategic Approaches Critically before Approving Cloud Computing Service Frameworks.

- 124. Arora, P., & Bhardwaj, S. (2017). Enhancing Security using Knowledge Discovery and Data Mining Methods in Cloud Computing.
- 125. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. *machine learning*, 8(7).
- 126.Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 127.Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
- 128.Sharma, S., & Dutta, N. (2018). Development of New Smart City Applications using Blockchain Technology and Cybersecurity Utilisation. *Development*, 7(11).
- 129.Sharma, S., & Dutta, N. (2017). Classification and Feature Extraction in Artificial Intelligence-based Threat Detection using Analysing Methods.
- 130.Sharma, S., & Dutta, N. (2017). Development of Attractive Protection through Cyberattack Moderation and Traffic Impact Analysis for Connected Automated Vehicles. *Development*, 4(2).
- 131. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 132. Sharma, S., & Dutta, N. (2015). Evaluation of REST Web Service Descriptions for Graph-based Service Discovery with a Hypermedia Focus. *Evaluation*, 2(5).
- 133.Sharma, S., & Dutta, N. (2015). Cybersecurity Vulnerability Management using Novel Artificial Intelligence and Machine Learning Techniques.
- 134.Sharma, S., & Dutta, N. (2015). Distributed DNN-based Middleware for Cyberattack Detection in the Smart IOT Ecosystem: A Novel Framework and Performance Evaluation Technique.
- 135.Sakshi, S. (2024). A Large-Scale Empirical Study Identifying Practitioners' Perspectives on Challenges in Docker Development: Analysis using Stack Overflow.
- 136.Sakshi, S. (2023). Advancements and Applications of Generative Artificial Intelligence and show the Experimental Evidence on the Productivity Effects using Generative Artificial Intelligence.
- 137.Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
- 138.Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
- 139.Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and Optimisation.
- 140.Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
- 141.Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
- 142.Bhat, S. (2023). Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
- 143.Bhat, S. (2019). Data Centre Cooling Technology's Effect on Turbo-Mode Efficiency.
- 144. Bhat, S. (2018). The Impact of Data Centre Cooling Technology on Turbo-Mode Efficiency.
- 145. Bhat, S. (2015). Technology for Chemical Industry Mixing and Processing. Technology, 2(2).
- 146.Bauri, K. P., & Sarkar, A. (2016). Flow and scour around vertical submerged structures. *Sādhanā*, 41, 1039-1053.
- 147.Bauri, K. P., & Sarkar, A. (2020). Turbulent bursting events within equilibrium scour holes around aligned submerged cylinder. *Journal of Turbulence*, 21(2), 53-83.
- 148.Bauri, K. P., & Sarkar, A. (2019). Turbulent burst-sweep events around fully submerged vertical square cylinder over plane bed. *Environmental Fluid Mechanics*, 19, 645-666.
- 149.Bauri, K. P. (2022). Coherent structures around submerged circular and square cylinders due to change of orientation angle in steady current over plane bed. *Acta Geophysica*, 70(5), 2223-2250.
- 150.Polamarasetti, A. (2024, November). Research developments, trends and challenges on the rise of machine learning for detection and classification of malware. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-5). IEEE.
- 151.Polamarasetti, A. (2024, November). Machine learning techniques analysis to Efficient resource provisioning for elastic cloud services. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.

- 152. Polamarasetti, A. (2024, November). Role of Artificial Intelligence and Machine Learning to Enhancing Cloud Security. In 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC) (pp. 1-6). IEEE.
- 153.Gollangi, H. K., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., & Reddy, M. S. (2020). Echoes in Pixels: The intersection of Image Processing and Sound detection through the lens of AI and Ml. *International Journal of Development Research*, 10(08), 39735-39743.
- 154.Reddy, M. S., Sarisa, M., Konkimalla, S., Bauskar, S. R., Gollangi, H. K., Galla, E. P., & Rajaram, S. K. (2021). Predicting tomorrow's Ailments: How AI/ML Is Transforming Disease Forecasting. *ESP Journal of Engineering & Technology Advancements*, *I*(2), 188-200.
- 155.Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. *Available at SSRN* 4977121.
- 156.Boddapati, V. N., Sarisa, M., Reddy, M. S., Sunkara, J. R., Rajaram, S. K., Bauskar, S. R., & Polimetla, K. (2022). Data migration in the cloud database: A review of vendor solutions and challenges. *Available at SSRN* 4977121.
- 157.Patra, G. K., Rajaram, S. K., Boddapati, V. N., Kuraku, C., & Gollangi, H. K. (2022). Advancing Digital Payment Systems: Combining AI, Big Data, and Biometric Authentication for Enhanced Security. *International Journal of Engineering and Computer Science*, 11(08), 10-18535.
- 158.Patra, G. K., Rajaram, S. K., & Boddapati, V. N. (2019). Ai And Big Data In Digital Payments: A Comprehensive Model For Secure Biometric Authentication. *Educational Administration: Theory and Practice*.
- 159.Boddapati, V. N., Galla, E. P., Sunkara, J. R., Bauskar, S., Patra, G. K., Kuraku, C., & Madhavaram, C. R. (2021). Harnessing the Power of Big Data: The Evolution of AI and Machine Learning in Modern Times. *ESP Journal of Engineering & Technology Advancements*, 1(2), 134-146.
- 160.Singh, K., & Neeru, N. (2023). A COMPREHENSIVE STUDY OF THE IOT ATTACKS ON DIFFERENT LAYERS. *Journal Punjab Academy of Sciences*, 23, 140-155.
- 161.Singh, K., & Neeru, N. (2023). A COMPREHENSIVE STUDY OF THE IOT ATTACKS ON DIFFERENT LAYERS. *Journal Punjab Academy of Sciences*, 23, 140-155.
- 162.Ravi, P., Haritha, D., & Obulesh, A. (2022). Average Iceberg Queries Computation Using Bitmap Indexes On Health Care Data. *Journal of Pharmaceutical Negative Results*, 3724-3731.
- 163. Singh, V., Sharma, M. P., Jayapriya, K., Kumar, B. K., Chander, M. A. R. N., & Kumar, B. R. (2023). Service quality, customer satisfaction and customer loyalty: A comprehensive literature review. *Journal of Survey in Fisheries Sciences*, 10(4S), 3457-3464.