# Unpredictable Failure of Poly Pulleys Along Cable Belt Conveyor System for Pulley Changing

<sup>1</sup>Tejashwini M, <sup>2</sup>CH Chandrima Rao, <sup>3</sup>Madhu

<sup>1,2,3</sup>Department of Computer Science and Engineering, Anurag University, Telangana, India.

21eg105f19@anurag.edu.in 21eg105f33@anurag.edu.in 21eg105f22@anurag.edu.in

**Abstract.** The cable belt conveyor system is widely used in heavy industries for the efficient transportation of bulk materials. However, unpredictable failures of poly pulleys within these systems can significantly disrupt operations, leading to unplanned downtime, costly repairs, and safety hazards. The sudden breakdown of poly pulleys compromises the reliability and performance of the conveyor system, often requiring frequent and unexpected pulley changes. This project seeks to identify and address the underlying causes of these unpredictable failures, develop strategies to enhance the durability and performance of poly pulleys, and propose a more effective pulley maintenance and replacement system to minimize downtime and improve overall system efficiency.

**Keywords.** Pulley Condition Monitoring, Failure Analysis, Machine Learning, Fault Detection and Diagnosis, Data-Driven Approach

# 1. INTRODUCTION

Problem Statement

Cable belt conveyor systems are crucial for transporting materials efficiently over long distances. Poly (polymeric or plastic) pulleys play a significant role in supporting these systems. However, their unpredictable failures can lead to substantial operational disruptions, increased maintenance costs, and safety concerns. Addressing these challenges is essential for maintaining the reliability and efficiency of conveyor systems.

Currently, maintenance strategies for conveyor systems often rely on scheduled inspections and reactive repairs, which may not effectively address the root causes of pulley failures. Traditional methods include routine visual inspections and periodic maintenance, but these approaches can be insufficient for predicting and preventing failures before they occur. Existing solutions may lack real-time monitoring and advanced analytical capabilities, leading to increased downtime and higher costs associated with unscheduled maintenance and system interruptions.

#### 2. RESEARCH METHODOLOGY

The methodology for developing the web application to empower farmers in pricing their agricultural products included the following components:

# 2.1 User-Centered Design

A user-centered approach was employed to ensure the platform effectively supports the needs of maintenance personnel and industrial operators. Initial input was gathered from engineers, maintenance staff, and equipment operators through interviews and surveys to identify key issues, such as frequent pulley failures, difficulty in tracking equipment health, and the high cost of unscheduled downtime. Based on this feedback, the application was designed with user- friendly dashboards, real-time monitoring, and failure prediction alerts tailored to support proactive maintenance decisions.

# 2.2 **Development Framework**

The development process followed an agile framework, allowing iterative testing and continuous feedback loops for quick adaptation to user needs. Using a JavaScript-based full-stack environment, the tech stack comprised MongoDB for real-time data storage, Node.js and Express.js for backend processing, and React.js for a dynamic, responsive frontend. This framework facilitated continuous integration and deployment, enabling rapid updates to model accuracy and user experience based on evolving requirements.

## 2.3 Evidence-Based Practices

Evidence-based practices from industrial predictive maintenance and machine learning literature were integrated to ensure the platform's accuracy and reliability. Features like historical data analysis, real-time sensor input monitoring, and secure data handling were incorporated following best practices in predictive analytics and operational security. This approach ensured the platform could handle large volumes of sensor data while maintaining reliability in diverse industrial conditions.

# 2.4 Data Collection and Analysis

Data was collected from conveyor systems using integrated sensors measuring factors such as temperature, vibration, and operational load. Analysis focused on identifying patterns that correlate with pulley failure, using both supervised machine learning techniques and historical operational data. Metrics like model accuracy, prediction frequency, and user satisfaction were continuously monitored. Additionally, feedback from operators was collected to fine-tune prediction models and improve the interpretability of failure alerts.

## 2.5 Community Engagement and Feedback

Community engagement was fostered through a feedback mechanism allowing operators to log their experience with the platform's predictions. This input, along with case studies from successful predictions, was used to build trust in the predictive model and to provide insights for further improvements. Regular feedback sessions helped gauge satisfaction and allowed users to suggest enhancements, fostering a collaborative environment between developers and end-users.

This methodology, grounded in user-centered design, evidence-based practices, and iterative development, aims to provide a robust solution for early detection of pulley failures, helping to reduce downtime and enhance predictive maintenance practices.

# 3. THEORY AND CALCULATION

## 3.1 Theory

The The theoretical foundation for addressing Unpredictable Failure of Poly Pulleys in Cable Belt Conveyor Systems draws on predictive maintenance principles, reliability engineering, and real-time decision support. This project is built upon three primary frameworks: Predictive Maintenance Theory, Reliability-Centered Maintenance (RCM), and Data-Driven Decision Making.

Predictive Maintenance Theory: Predictive maintenance (PdM) theory is based on continuously monitoring equipment conditions to predict potential failures before they occur.

This approach uses real-time sensor data, such as vibration, temperature, and load levels, to identify patterns associated with equipment wear or degradation. The core idea is to maximize operational uptime and optimize resource usage by replacing reactive maintenance strategies with predictive insights. This theory underpins the platform's goal of proactively alerting operators to potential pulley failures, allowing timely interventions that reduce downtime and maintenance costs.

Reliability-Centered Maintenance (RCM): RCM is a structured approach to determine the maintenance needs of physical assets within an operational context. It prioritizes functions critical to safety and productivity and assesses failure modes to mitigate their impact. By analyzing failure modes specific to poly pulleys, this

project enables an application that optimally schedules maintenance, balancing the cost of maintenance with the cost of failure. RCM provides a foundational framework for the platform to identify critical parameters and support an optimized maintenance schedule that aligns with the operational priorities of conveyor systems.

Data-Driven Decision Making: This project is underpinned by data-driven decision-making theory, emphasizing the importance of leveraging historical data and real-time insights to guide maintenance actions. The application uses a data analytics layer to process historical failure data, real-time sensor readings, and predictive algorithms, providing operators with actionable insights. In line with information systems theory, which asserts that data analytics improves decision quality, this approach helps operators make timely, informed maintenance decisions that extend pulley lifespan and prevent unexpected breakdowns.

## 3.2 Calculation

To assess the platform's effectiveness in predicting the failure of poly pulleys, multiple performance metrics and analysis methods are employed. These calculations help evaluate the model's accuracy, operational reliability, and practical benefits in enhancing maintenance scheduling and reducing downtime. Random Forest and Feedforward Neural Networks (FFNN) are the primary algorithms, leveraging Adam Optimization and Binary Cross-Entropy Loss functions, with ReLU and Sigmoid activation functions.

## 1. Model Accuracy and Loss Evaluation:

Calculation Method: Both algorithms (Random Forest and FFNN) are evaluated for accuracy using Binary Cross-Entropy Loss for classification tasks (failure vs. no-failure). Accuracy is calculated as the ratio of correct predictions to total predictions, and loss represents the error in predictions.

Expected Outcome: Lower loss values and higher accuracy indicate better predictive capabilities. Performance comparisons between Random Forest and FFNN reveal which algorithm better suits pulley failure prediction.

## 2. Precision, Recall, and F1 Score:

Calculation Method: For each model, precision (ratio of true positives to predicted positives), recall (ratio of true positives to actual positives), and F1 score (harmonic mean of precision and recall) are calculated.

Expected Outcome: High precision and recall indicate reliable failure predictions. The F1 score provides a balanced measure, especially valuable when failure events are relatively rare.

# 3. Training and Validation Loss Convergence:

Calculation Method: During training, loss values for both training and validation sets are monitored to evaluate model convergence. Adam optimization is applied to minimize Binary Cross-Entropy Loss iteratively. Training continues until loss convergence or predefined epochs are reached.

Expected Outcome: A lower validation loss with minimal overfitting suggests model robustness. The goal is for the training and validation loss to converge, showing a good fit on new, unseen data.

#### 4. Feature Importance Analysis (Random Forest):

Calculation Method: In the Random Forest model, feature importance is calculated by assessing each feature's contribution to model accuracy. This helps identify key indicators of poly pulley failure (e.g., vibration, temperature).

Expected Outcome: Features such as high vibration or extreme temperatures should emerge as significant. These insights inform predictive model adjustments and prioritize sensor data collection.

#### 5. Activation Function Evaluation (Feedforward Neural Networks):

Calculation Method: The FFNN model employs ReLU activation for hidden layers and Sigmoid activation for the output layer. ReLU enables efficient gradient descent, while Sigmoid facilitates binary classification.

Expected Outcome: A model with ReLU and Sigmoid should demonstrate rapid convergence and effective binary classification. Performance with different activation functions is analyzed to confirm ReLU and Sigmoid's suitability for the task.

## 6. Operational Uptime Improvement Analysis:

Calculation Method: By calculating the reduction in unplanned downtime due to predictive alerts, the practical impact of the model on uptime is measured. This is calculated by comparing the average downtime before and after implementing predictive maintenance.

Expected Outcome: A reduction in downtime would demonstrate the model's effectiveness in preempting pulley failures. This metric directly correlates with operational efficiency and cost savings.

## 7. False Positive and False Negative Rate Analysis:

Calculation Method: False positives (non-failure predicted as failure) and false negatives (failure predicted as non-failure) are calculated to understand model error distribution.

Expected Outcome: Minimizing false negatives is critical, as undetected failures could lead to costly downtime. A balanced reduction in both error types signifies model robustness and reliability.

## 8. Impact on Maintenance Costs:

Calculation Method: Cost savings from the predictive maintenance model are calculated by comparing average maintenance costs before and after model deployment. This includes reduced emergency repairs and optimizations in scheduled maintenance.

Expected Outcome: Cost savings in maintenance indicate that the predictive model provides economic value, helping prioritize maintenance schedules and reduce emergency interventions.

# 4. RESULTS AND DISCUSSION

The developed web application enables streamlined management for pulley maintenance in mechanical systems, allowing users to input pulley details for failure prediction. The system incorporates advanced data management and predictive analytics to improve maintenance scheduling and operational reliability.

# 4.1 Results

## 1. User Management and Authentication

Outcome: The application integrates a secure user authentication system, ensuring that only verified users can access the prediction platform.

Impact: This enhances user trust and safety, encouraging consistent use by maintenance personnel confident in data security.

## 2. Pulley Detail Input and Prediction Interface

Outcome: Users can input specific pulley details for accurate failure prediction, enabling tailored maintenance schedules.

Impact: This functionality allows for a personalized maintenance plan, improving efficiency by predicting specific component failures and optimizing scheduling.

## 3. Predictive Analytics for Failure Estimation

Outcome: The platform applies machine learning algorithms (Random Forest, FFNN) to predict pulley failure based on input parameters.

Impact: Accurate predictions reduce unexpected failures, minimizing downtime and maintenance costs. Improved foresight into potential issues helps in resource planning and timely interventions.

## 4. Data-Driven Insights for Maintenance

Outcome: The platform provides historical trends and insights based on prior pulley failures, assisting in better-informed maintenance strategies.

Impact: Data transparency enables maintenance teams to adapt to recurring issues, enhancing long-term system reliability and reducing operational costs.

## 5. Secure Data Storage and Access

Outcome: All pulley information and prediction results are stored securely, maintaining data integrity and user confidentiality.

Impact: The secure data storage fosters a trustworthy environment for organizations to store critical machinery data, encouraging broader adoption of predictive maintenance practices.

## 4.2 Discussion

# 1. Enhancing Predictive Maintenance

The platform's predictive capabilities empower maintenance teams by allowing proactive interventions, reducing reliance on reactive repairs. This enhances machine reliability and extends component life.

## 2. Data-Driven Insights for Improved Efficiency

Transparency and data accessibility streamline maintenance processes, ensuring parts are serviced only when needed, which prevents unnecessary downtime and reduces operational costs.

# 3. Challenges and Future Considerations

User Adaptation: Training may be necessary for maintenance teams unfamiliar with digital prediction tools.

Scalability: As user demand grows, the platform must maintain prediction accuracy and data security.

Data Security: Ongoing cybersecurity improvements are essential to protect sensitive machinery information.

## 4. Opportunities for Expansion

Future enhancements could include integration with IoT sensors for real-time monitoring and predictive alerts for various other machinery components, supporting a more comprehensive maintenance solution.

## 5. CONCLUSIONS

This research demonstrates the potential of predictive digital tools in addressing the challenge of unpredictable poly pulley failures. By providing a platform that incorporates real-time data entry, predictive modelling, and secure user access, the study addresses crucial gaps in mechanical maintenance. Initial results indicate that the platform effectively enhances predictive accuracy, thereby improving maintenance scheduling and reducing system downtime. Future work will focus on expanding predictive capabilities, integrating more complex data analysis, and testing scalability across various mechanical systems.

#### 5.1 **Declarations**

#### Study Limitations

The research team has identified several potential limitations in the current study on the Unpredictable Failure of Poly Pulleys in Cable Belt Conveyor Systems. These limitations could impact the deployment and scalability of predictive maintenance solutions in real-world applications:

#### 1. Scalability and System Load:

While preliminary testing demonstrates effective predictive capabilities, scalability may present challenges as the system scales across multiple conveyor systems in large industrial settings. Expanding the platform to manage a higher volume of data inputs and predictive requests may require additional computational resources and infrastructure optimization.

#### 2. Sensor Reliability and Data Integrity:

The prediction model heavily relies on sensor data for features like temperature, vibration, and load monitoring. In an industrial setting, sensor performance can degrade over time due to environmental factors, leading to data inaccuracies. Routine maintenance of sensors or implementing redundancy mechanisms would be necessary to ensure consistent data quality.

## 3. Operator Training and Adaptation:

Effective utilization of the prediction platform depends on operators' familiarity with digital diagnostic tools. Maintenance personnel may require additional training to understand prediction outputs, interpret failure risk assessments, and take timely action, especially if they are accustomed to traditional maintenance methods.

## 4. Data Privacy and Security:

Although the system currently secures data, safeguarding the data collected on system performance and conveyor operations will become increasingly important. The expansion of monitoring may require enhanced cybersecurity measures to protect sensitive operational information from potential cyber threats.

## 5. Environmental Variability:

The predictive model is based on data collected under specific operational and environmental conditions. Significant variations in environmental conditions, such as temperature or humidity, could affect pulley performance, which may not be fully accounted for in the initial model. Future adaptations may be needed to improve model accuracy under varying operational contexts.

These limitations highlight areas for ongoing evaluation and improvement as the predictive platform is further developed and scaled. Addressing these challenges proactively can help enhance the platform's reliability, scalability, and user adoption over time.

# **5.2** Funding Source

The study was conducted without external funding. All resources and support for the project were provided internally by Anurag University's Department of Computer Science and Engineering. The absence of external funding helps to maintain objectivity, as there are no financial stakeholders influencing the research outcomes or the platform's development goals.

# 5.3 Acknowledgments

The authors express gratitude to Mrs. Meenakshi Simha, Assistant Professor at Anurag University, for his valuable guidance and support throughout the project. Mrs. Meenakshi Simha, provided

insights on research design, assisted in shaping the project's objectives, and offered technical expertise during the development and testing phases. His mentorship contributed significantly to the study's successful execution and the development of the web platform.

# 5.4 Competing Interests

The authors declare no competing interests. This means that there are no conflicts, financial or otherwise, that could have influenced the research outcomes or the presentation of findings. The absence of competing interests ensures that the research was conducted and reported with transparency, integrity, and an unbiased focus on improving the agricultural sector's transparency and fairness through digital tools.

## **REFERENCES**

- 1. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 2. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In *Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1* (pp. 247-257). Springer Singapore.
- 3. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET'S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 738-741). IEEE.
- 4. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., ... & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
- 5. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Bhargavi, P. J., Alekhya, A., ... & Nandini, K. (2022, November). Cardiovascular Disease Prediction using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 60-66). IEEE.
- 6. Narayana, M. S., Babu, N., Prasad, B. V. V. S., & Kumar, B. S. (2011). Clustering Categorical Data-Study of Mining Tools for Data Labeling. *International Journal of Advanced Research in Computer Science*, 2(4).
- 7. Shankar, G. S., Onyema, E. M., Kavin, B. P., Gude, V., & Prasad, B. S. (2024). Breast Cancer Diagnosis Using Virtualization and Extreme Learning Algorithm Based on Deep Feed Forward Networks. *Biomedical Engineering and Computational Biology*, *15*, 11795972241278907.
- 8. Kulkarni, R., & Prasad, B. S. (2022). Predictive Modeling Of Heart Disease Using Artificial Intelligence. *Journal of Survey in Fisheries Sciences*, 791-801.
- 9. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.

- 10. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. *International Journal of Electrical and Computer Engineering* (*IJECE*), 11(1), 114-123.
- 11. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, *5*(6), 791-803.
- 12. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 13. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2015). Voltage stability enhancement of distribution system using network reconfiguration in the presence of DG. *Distributed Generation & Alternative Energy Journal*, 30(4), 37-54.
- 14. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, 3(2), 3328-3333.
- 15. Madhavi, M., & Murthy, G. V. (2020). Role of certifications in improving the quality of Education in Outcome Based Education. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 16. Varaprasad Rao, M., Srujan Raju, K., Vishnu Murthy, G., & Kavitha Rani, B. (2020). Configure and management of internet of things. In *Data Engineering and Communication Technology: Proceedings of 3rd ICDECT-2K19* (pp. 163-172). Springer Singapore.
- 17. Murthy, G. V. K., Suresh, C. H. V., Sowjankumar, K., & Hanumantharao, B. (2019). Impact of distributed generation on unbalanced radial distribution system. *International Journal of Scientific and Technology Research*, 8(9), 539-542.
- 18. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. *International Journal of Advanced Computer Science and Applications*, 13(7).
- 19. Balram, G., & Kumar, K. K. (2018). Smart farming: Disease detection in crops. *Int. J. Eng. Technol*, 7(2.7), 33-36.
- 20. Balram, G., Rani, G. R., Mansour, S. Y., & Jafar, A. M. (2001). Medical management of otitis media with effusion. *Kuwait Medical Journal*, *33*(4), 317-319.
- 21. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, 13(2), 2749-2757.
- 23. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 24. Prasad, PVS Siva, and S. Krishna Mohan Rao. "A Survey on Performance Analysis of ManetsUnder Security Attacks." *network* 6, no. 7 (2017).
- 25. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions, Hyderabad, AP, India*.
- 26. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33(Special Issue).
- 27. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 28. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3).
- 29. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.

- 30. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 31. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 32. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 33. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, *13*(1), 159-168.
- 34. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 35. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 36. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 37. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 38. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child's Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.
- 39. Sravan, K., Gunakar Rao, L., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2023, July). Analyze the Quality of Wine Based on Machine Learning Approach. In *International Conference on Data Science and Applications* (pp. 351-360). Singapore: Springer Nature Singapore.
- 40. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 41. Ramineni, K., Harshith Reddy, K., Sai Thrikoteshwara Chary, L., Nikhil, L., & Akanksha, P. (2024, February). Designing an Intelligent Chatbot with Deep Learning: Leveraging FNN Algorithm for Conversational Agents to Improve the Chatbot Performance. In *World Conference on Artificial Intelligence: Advances and Applications* (pp. 143-151). Singapore: Springer Nature Singapore.
- 42. Samya, B., Archana, M., Ramana, T. V., Raju, K. B., & Ramineni, K. (2024, February). Automated Student Assignment Evaluation Based on Information Retrieval and Statistical Techniques. In *Congress on Control, Robotics, and Mechatronics* (pp. 157-167). Singapore: Springer Nature Singapore.
- 43. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 44. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng.*, 11, 503-512.
- 45. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 46. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 47. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.

- 48. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators' neural network in financial sector. *Multimedia Tools and Applications*, 83(16), 48761-48797.
- 49. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 50. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 51. Ravinder Reddy, B., & Anil Kumar, A. (2020). Survey on access control mechanisms in cloud environments. In *Advances in Computational Intelligence and Informatics: Proceedings of ICACII* 2019 (pp. 141-149). Springer Singapore.
- 52. Reddy, M. B. R., Nandini, J., & Sathwik, P. S. Y. (2019). Handwritten text recognition and digital text conversion. *International Journal of Trend in Research and Development*, *3*(3), 1826-1827.
- 53. Reddy, B. R., & Adilakshmi, T. (2023). Proof-of-Work for Merkle based Access Tree in Patient Centric Data. *structure*, 14(1).
- 54. Reddy, B. R., Adilakshmi, T., & Kumar, C. P. (2020). Access Control Methods in Cloud Enabledthe Cloud-Enabled Internet of Things. In *Managing Security Services in Heterogenous Networks* (pp. 1-17). CRC Press.
- 55. Reddy, M. B. R., Akhil, V., Preetham, G. S., & Poojitha, P. S. (2019). Profile Identification through Face Recognition.
- 56. Dutta, P. K., & Mitra, S. (2021). Application of agricultural drones and IoT to understand food supply chain during post COVID-19. *Agricultural informatics: automation using the IoT and machine learning*, 67-87.
- 57. Matuka, A., Asafo, S. S., Eweke, G. O., Mishra, P., Ray, S., Abotaleb, M., ... & Chowdhury, S. (2022, December). Analysing the impact of COVID-19 outbreak and economic policy uncertainty on stock markets in major affected economies. In *6th Smart Cities Symposium (SCS 2022)* (Vol. 2022, pp. 372-378). IET.
- 58. Saber, M., & Dutta, P. K. (2022). Uniform and Nonuniform Filter Banks Design Based on Fusion Optimization. *Fusion: Practice and Applications*, 9(1), 29-37.
- 59. Mensah, G. B., & Dutta, P. K. (2024). Evaluating if Ghana's Health Institutions and Facilities Act 2011 (Act 829) Sufficiently Addresses Medical Negligence Risks from Integration of Artificial Intelligence Systems. *Mesopotamian Journal of Artificial Intelligence in Healthcare*, 2024, 35-41.
- 60. Aydın, Ö., Karaarslan, E., & Gökçe Narin, N. (2023). Artificial intelligence, vr, ar and metaverse technologies for human resources management. VR, AR and Metaverse Technologies for Human Resources Management (June 15, 2023).
- 61. Chidambaram, R., Balamurugan, M., Senthilkumar, R., Srinivasan, T., Rajmohan, M., Karthick, R., & Abraham, S. (2013). Combining AIET with chemotherapy–lessons learnt from our experience. *J Stem Cells Regen Med*, 9(2), 42-43.
- 62. Karthick, R., & Sundhararajan, M. (2014). Hardware Evaluation of Second Round SHA-3 Candidates Using FPGA. *International Journal of Advanced Research in Computer Science & Technology (IJARCST 2014)*, 2(2).
- 63. Sudhan, K., Deepak, S., & Karthick, R. (2016). SUSTAINABILITY ANALYSIS OF KEVLAR AND BANANA FIBER COMPOSITE.
- 64. Karthick, R., Gopalakrishnan, S., & Ramesh, C. (2020). Mechanical Properties and Characterization of Palmyra Fiber and Polyester Resins Composite. *International Journal of Emerging Trends in Science & Technology*, 6(2).
- 65. Karthick, R., Pandi, M., Dawood, M. S., Prabaharan, A. M., & Selvaprasanth, P. (2021). ADHAAR: A RELIABLE DATA HIDING TECHNIQUES WITH (NNP2) ALGORITHMIC APPROACH USING X-RAY IMAGES. *3C Tecnologia*, 597-608.
- 66. Deepa, R., Karthick, R., Velusamy, J., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. *Computer Standards & Interfaces*, 92, 103934.

- 67. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 68. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 69. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 70. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 71. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 72. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. *Methods*, 8(2).
- 73. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 74. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 75. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 76. Arora, P., & Bhardwaj, S. (2017). Investigation and Evaluation of Strategic Approaches Critically before Approving Cloud Computing Service Frameworks.
- 77. Arora, P., & Bhardwaj, S. (2017). Enhancing Security using Knowledge Discovery and Data Mining Methods in Cloud Computing.
- 78. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. *machine learning*, 8(7).
- 79. Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
- 80. Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
- 81. Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and Optimisation.
- 82. Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
- 83. Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
- 84. Bhat, S. (2023). Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
- 85. Bhat, S. (2019). Data Centre Cooling Technology's Effect on Turbo-Mode Efficiency.
- 86. Bhat, S. (2018). The Impact of Data Centre Cooling Technology on Turbo-Mode Efficiency.
- 87. Bhat, S. (2015). Technology for Chemical Industry Mixing and Processing. *Technology*, 2(2).
- 88. Karthick, R., & Pragasam, J. (2019). D "Design of Low Power MPSoC Architecture using DR Method" Asian Journal of Applied Science and Technology (AJAST) Volume 3, Issue 2.
- 89. Karthick, R. (2018). Deep Learning For Age Group Classification System. *International Journal Of Advances In Signal And Image Sciences*, 4(2), 16-22.
- 90. Karthick, R., Akram, M., & Selvaprasanth, P. (2020). A Geographical Review: Novel Coronavirus (COVID-19) Pandemic. A Geographical Review: Novel Coronavirus (COVID-19) Pandemic (October 16, 2020). Asian Journal of Applied Science and Technology (AJAST)(Quarterly International Journal) Volume, 4, 44-50.
- 91. Karthick, R. (2018). Integrated System For Regional Navigator And Seasons Management. *Journal of Global Research in Computer Science*, 9(4), 11-15.
- 92. Kavitha, N., Soundar, K. R., Karthick, R., & Kohila, J. (2024). Automatic video captioning using tree hierarchical deep convolutional neural network and ASRNN-bi-directional LSTM. *Computing*, *106*(11), 3691-3709.
- 93. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 94. Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 95. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).

- 96. Lokhande, M., Kalpanadevi, D., Kate, V., Tripathi, A. K., & Bethapudi, P. (2023). Study of Computer Vision Applications in Healthcare Industry 4.0. In *Healthcare Industry 4.0* (pp. 151-166). CRC Press.
- 97. Parganiha, R., Tripathi, A., Prathyusha, S., Baghel, P., Lanjhiyana, S., Lanjhiyana, S., ... & Sarkar, D. (2022). A review of plants for hepatic disorders. *J. Complement. Med. Res*, *13*(46), 10-5455.
- 98. Tripathi, A. K., Soni, R., & Verma, S. (2022). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mimosa pudica (linn.). *Research Journal of Pharmacy and Technology*, 15(9), 4293-4299.
- 99. Tripathi, A. K., Dwivedi, C. P., Bansal, P., Pradhan, D. K., Parganiha, R., & Sahu, D. An Ethnoveterinary Important Plant Terminalia Arjuna. *International Journal of Health Sciences*, (II), 10601-10607.
- 100.Mishra, S., Grewal, J., Wal, P., Bhivshet, G. U., Tripathi, A. K., & Walia, V. (2024). Therapeutic potential of vasopressin in the treatment of neurological disorders. *Peptides*, 174, 171166.
- 101. Koliqi, R., Fathima, A., Tripathi, A. K., Sohi, N., Jesudasan, R. E., & Mahapatra, C. (2023). Innovative and Effective Machine Learning-Based Method to Analyze Alcoholic Brain Activity with Nonlinear Dynamics and Electroencephalography Data. *SN Computer Science*, *5*(1), 113.
- 102. Tripathi, A. K., Diwedi, P., Kumar, N., Yadav, B. K., & Rathod, D. (2022). Trigonella Foenum Grecum L. Seed (Fenugreek) Pharmacological Effects on Cardiovascular and Stress Associated Disease. *NeuroQuantology*, 20(8), 4599.
- 103. Sahu, P., Sharma, G., Verma, V. S., Mishra, A., Deshmukh, N., Pandey, A., ... & Chauhan, P. (2022). Statistical optimization of microwave assisted acrylamide grafting of Linum usitatissimum Gum. *NeuroQuantology*, 20(11), 4008.
- 104.Biswas, D., Sharma, G., Pandey, A., Tripathi, A. K., Pandey, A., Sahu, P., ... & Chauhan, P. (2022). Magnetic Nanosphere: Promising approach to deliver the drug to the site of action. *NeuroQuantology*, 20(11), 4038.
- 105.Kumar, D. P., & Kumar, P. G. (2025). Implementation of optimal routing in heterogeneous wireless sensor network with multi-channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer. *International Journal of Communication Systems*, 38(1), e5980.
- 106. Avhankar, Madhavi S., et al. "Mobile ad hoc network routing protocols using opnet simulator." *International Journal on Recent and Innovation Trends in Computing and Communication* 10.1 (2022): 1-7.
- 107.Pawar, J. A., Avhankar, M. S., Gupta, A., Barve, A., Patil, H., & Maranan, R. (2024, May). Enhancing Network Security: Leveraging Isolation Forest for Malware Detection. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT) (pp. 230-234). IEEE.
- 108.Avhankar, M. S., Pawar, J., & Byagar, S. (2022, December). Localization Algorithms in Wireless Sensor Networks: Classification, Case Studies and Evaluation Frameworks. In 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT) (pp. 01-07). IEEE.
- 109. Avhankar, M. S., Pawar, J., Singh, G., Asokan, A., Kaliappan, S., & Purohit, K. C. (2023, May). Simulation Environment for the I9 Vanet Platform. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-8). IEEE.