IT System Log Analyzer

¹Beulah Rani, ²Tharun, ³Praveen

Corresponding author's email: 21eg105h37@anurag.edu.in

Abstract. The IT System Log Analyzer project is designed to efficiently collect, process, and analyze system logs from various sources, providing IT teams with the ability to monitor system performance and security in real time.

Leveraging a technology stack that includes React JS for the frontend and Node.js for server-side processing, the project streamlines the workflow of log data management. The use of Visual Studio Code as the primary development environment ensures seamless coding, debugging, and version control. The integration of NPM (Node Package Manager) allows for efficient dependency management, speeding up the development process and ensuring consistency across the application.

To extract meaningful insights from raw log data, the project utilizes Regex for pattern matching, enabling efficient searching and filtering of data entries. By transforming complex, unstructured logs into structured formats, the system ensures that users can quickly identify relevant events, errors, and security breaches. The visualization component is powered by D3.js, a powerful library that converts raw data into interactive charts and graphs, allowing users to easily spot trends and anomalies. These visualizations make it much easier to interpret large volumes of data, reducing the time spent on manual analysis and improving decision-making processes.

Ant Design (ANTD) is employed to enhance the user interface with pre-built, responsive components that streamline the design process and provide a clean, intuitive look to the application. This not only improves usability but also ensures a consistent user experience. The combination of these tools results in a robust system that enhances log management capabilities, allowing IT teams to proactively detect and address potential system issues. Future enhancements could include integrating machine learning models for predictive analytics, which would enable the system to automatically detect unusual patterns, further strengthening IT security and performance monitoring.

I. INTRODUCTION

The IT System Log Analyzer is a comprehensive solution designed to streamline the collection, processing, and visualization of log data from various systems, applications, and network devices. In modern IT environments, where vast amounts of data are generated continuously, efficiently managing these logs is essential to ensure optimal performance, enhance security, and maintain compliance. By leveraging a technology stack that includes React JS, Node.js,

D3.js, and Ant Design (ANTD), the project delivers a dynamic and user-friendly platform for analyzing log data in real time. The system uses Regex for precise data extraction and filtering, transforming raw logs into actionable insights that help IT teams monitor system health, detect anomalies, and respond proactively to potential issues. This solution significantly reduces the manual effort required in log analysis, enabling faster and more informed decision- making.

II. MOTIVATION

The motivation behind developing the IT System Log Analyzer stems from the growing complexity and volume of log data generated in modern IT infrastructures. As organizations increasingly rely on diverse systems, applications, and network devices, managing and making sense of the vast amounts of log data has become a significant challenge. Traditional methods of manually reviewing logs are time-consuming, errorprone, and inefficient, often leading to delays in detecting critical issues like security breaches, system failures, or performance bottlenecks. This project aims to address these challenges by providing a streamlined, automated solution for collecting, processing, and analyzing logs, allowing IT teams to gain real-time insights into system performance and security.

The use of modern technologies like React JS, Node.js, D3.js, and Regex was driven by the need for a scalable, efficient, and user-friendly platform that can handle diverse log formats and data volumes. By

integrating dynamic data visualizations and responsive UI components with Ant Design (ANTD), the project not only simplifies the process of log management but also empowers organizations to proactively monitor their IT environments, make data-driven decisions, and reduce downtime. The goal is to transform raw, unstructured log data into actionable insights, ultimately enhancing the overall reliability, security, and efficiency of IT operations.

III. OBJECTIVES

For an **IT System Log Analyzer** project developed using the specified tools and libraries, here are some clear objectives:

1. Log Data Extraction and Parsing

- Implement a mechanism to extract log files from various sources, convert them into structured data, and parse the data for readability and analysis.
- Use **Node.js** and **Regex** to handle file reading and parsing patterns in raw log files, enabling accurate extraction of relevant information.

2. Interactive Data Visualization

- Utilize **D3.js** to create dynamic and interactive visualizations, such as graphs, timelines, and heatmaps, to represent log patterns, error trends, and resource usage over time.
- Develop data visualizations in **React JS** to help IT administrators and analysts quickly understand key metrics and detect anomalies.

3. User Interface and Experience

- Design a responsive and intuitive UI using **React** and **Ant Design (ANTD)** for a seamless experience in log analysis, enabling easy navigation, search, and filtering of log entries.
- Incorporate interactive elements to allow users to drill down into specific log events, search by keywords, and apply filters to refine data views.

4. Real-time Data Processing and Monitoring

- Set up real-time data updates (using **Node.js** and WebSocket integration if needed) to provide users with current log data for monitoring live system activities and troubleshooting issues as they arise.
- Allow real-time alerts and notifications for critical errors or anomalies detected in the log data, enhancing response times and system reliability.

5. Data Sorting, Searching, and Filtering

- Implement advanced searching, sorting, and filtering functionalities using **Regex** for accurate query matching.
- Enable users to quickly locate specific events, error codes, or time stamps within large volumes of data, making troubleshooting efficient.

6. Extensibility and Scalability

- Design the system to support various log formats and large datasets, ensuring scalability for enterprise-level log management.
- Modularize components in **React** to allow easy addition of new features or support for new log data sources in the future.

7. Deployment and User Accessibility

- Package the project with **NPM** for easy setup and deployment.
- Utilize **Visual Studio Code** for development efficiency and ensure code quality through linting and debugging capabilities.

IV. METHODLOGY AND ARCHITECTURE

Methodology

This project will use an Agile approach to develop the system in stages. We'll begin by gathering requirements and designing the system's layout. Then, we'll build and test each feature step-by-step: data extraction, visualization, real-time monitoring, and search functions. Frequent testing ensures quality, and

we'll make the system easy to set up and maintain.

Architecture

1. Front-End (React, ANTD)

- The user interface is built with **React** and styled with **Ant Design**. It includes interactive charts (D3.js) for visualizing log data and options to search, filter, and view alerts.

2. Back-End (Node.js, Express)

- The server handles log data processing using **Node.js**. It ingests, parses (using Regex), and organizes the data, serving it to the front end through APIs.

3. Data Visualization (D3.js)

- **D3.js** is used to create graphs and charts, helping users see patterns and detect issues in the logs.

4. Real-Time Monitoring (WebSocket)

- A real-time module uses WebSocket to push live log updates and alerts to the UI so users can monitor ongoing system events instantly.

5. Data Storage

- Logs can be stored as files or in a database, depending on scalability needs.

Data Flow

- 1. Log data is ingested and parsed on the back end.
- 2. Parsed data is stored and prepared for visualization.
- 3. The front end fetches data for display and sends real-time updates for any alerts.

This setup ensures a user-friendly, responsive, and scalable log analyzer for IT monitoring.

V.EXPECTED OUTPUT

The expected output for the IT System Log Analyzer project includes the following:

1. Parsed and Structured Log Data

- Raw log files are ingested and parsed into a structured format, typically JSON, making the data searchable and ready for analysis.
- Users can access detailed information about each log entry, including timestamps, error types, system components, and other relevant metadata.

2. Interactive Data Visualizations

- The system generates dynamic, interactive charts and graphs (e.g., line charts, heatmaps, pie charts) that visually represent log data trends and patterns.
- Visualizations allow users to identify spikes in errors, performance bottlenecks, and usage trends over specific time periods.

3. Real-Time Monitoring and Alerts

- The system provides real-time updates, with new log entries displayed as they occur.
- Customizable alert notifications are triggered by critical events or specific log patterns, enabling users to respond promptly to issues.

4. Advanced Search and Filtering Capabilities

- Users can search logs by keywords, filter by specific criteria (such as error type or severity), and sort log entries to find relevant information quickly.
- The output includes filtered data views that allow users to drill down into specific events, making troubleshooting more efficient.

VI. FUTURE WORK

In the future, the IT System Log Analyzer could be enhanced by adding machine learning

capabilities to predict and identify anomalies based on historical log patterns. By integrating models trained on previous data, the system could automatically flag unusual behaviours and alert users to potential issues before they escalate. This predictive element would significantly enhance the system's effectiveness in proactive monitoring, particularly in environments with high data volumes or where certain error patterns might be hard to detect manually.

Another area for future improvement is the expansion of log format compatibility. Currently, the system processes logs using Regex, which works well for standard formats. However, adding support for a wider range of log structures, or enabling dynamic parsing configurations, would allow the tool to handle an even broader variety of log sources. Additionally, offering integration with popular logging services (e.g., AWS CloudWatch, Google Cloud Logging) could allow users to import and analyze cloud-native logs directly, improving the system's flexibility and making it more appealing to cloud-based infrastructures.

Lastly, enhancing collaborative and reporting features could make the tool even more valuable to IT teams. For example, enabling role-based access control and user accounts would allow multiple team members to use the system securely and view customized dashboards based on their needs. Adding automated report generation for specific metrics and trends could streamline insights sharing across teams. Such features would transform the log analyzer into a comprehensive tool for collaborative incident management and continuous monitoring, making it highly adaptable to various organizational environments.

VII. LITERATURE OVERVIEW

1. Log Management and Analysis

Effective log management allows IT teams to detect anomalies, troubleshoot errors, and monitor security. Research highlights how systems like ELK (Elasticsearch, Logstash, Kibana) and Splunk use indexing, real-time monitoring, and visualization for better log analysis. This project follows these principles, using modern, accessible web technologies for a streamlined log analysis solution.

2. Data Parsing Techniques

Parsing log data into structured formats is a core step for analysis. **Regex** is widely recognized for its effectiveness in identifying patterns and extracting information from unstructured logs. By using Regex, our project efficiently parses varied log formats, preparing data for display and analysis.

3. Data Visualization and Analytics

Visualization tools like **D3.js** are popular in log analysis for their flexibility in displaying complex data interactively. Literature emphasizes how graphical views help identify patterns and outliers quickly. Our project applies these concepts to make log trends and anomalies easier to spot and understand.

4. Real-Time Monitoring

Real-time log monitoring is essential for quick incident response. Studies on WebSocket technology show its value in delivering live updates, which is crucial for alerting users to critical system events instantly. This project uses WebSocket to push real-time log updates to the user interface.

5. User Interface and Experience (UI/UX)

Research on user interface design stresses that IT tools should be intuitive and responsive, enabling users to navigate complex information easily. **React** and **Ant Design (ANTD)** are noted for creating dynamic, user-friendly UIs, which this project leverages to ensure a clear and accessible experience for searching, filtering, and viewing log data.

6. Scalability and Extensibility

Scalability is essential in log analysis as data volume grows. Research supports **Node.js** and NoSQL databases like MongoDB for efficient handling of large-scale log data. This project's modular design allows it to scale as needed, supporting larger datasets and diverse log sources.

VIII.CONCLUSION

The IT System Log Analyzer project combines modern web technologies to create an efficient, user-friendly tool for analyzing and monitoring log data in real-time. By using Regex for parsing, the system can transform unstructured logs into a format that's ready for interactive visualization. D3.js enables users to visualize data patterns and trends, helping them quickly identify issues or anomalies. With a responsive

interface built on React and Ant Design, the tool provides a streamlined user experience, allowing for easy searching, filtering, and viewing of complex data.

Furthermore, the project's modular and scalable design ensures that it can handle large volumes of log data, making it suitable for enterprise-level deployments. WebSocket integration provides real-time monitoring, which enhances proactive system management by alerting users to critical events instantly. Overall, this log analyzer project is a valuable tool for IT professionals seeking to improve system visibility, reduce troubleshooting time, and maintain operational reliability through an accessible, extensible platform.

REFERENCES

- 1. Murthy, G., and R. Shankar. "Composite Fermions." (1998): 254-306.
- 2. Mahalakshmi, A., Goud, N. S., & Murthy, G. V. (2018). A survey on phishing and it's detection techniques based on support vector method (Svm) and software defined networking (sdn). *International Journal of Engineering and Advanced Technology*, 8(2), 498-503.
- 3. Murthy, G., & Shankar, R. (2002). Semiconductors II-Surfaces, interfaces, microstructures, and related topics-Hamiltonian theory of the fractional quantum Hall effect: Effect of Landau level mixing. *Physical Review-Section B-Condensed Matter*, 65(24), 245309-245309.
- 4. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2014). Optimal placement of DG in distribution system to mitigate power quality disturbances. *International Journal of Electrical and Computer Engineering*, 7(2), 266-271.
- 5. Muraleedharan, K., Raghavan, R., Murthy, G. V. K., Murthy, V. S. S., Swamy, K. G., & Prasanna, T. (1989). An investigation on the outbreaks of pox in buffaloes in Karnataka.
- 6. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2012). Reliability improvement of radial distribution system with distributed generation. *International Journal of Engineering Science and Technology (IJEST)*, 4(09), 4003-4011.
- 7. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
- 8. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. *International Journal of Electrical and Computer Engineering (IJECE)*, 11(1), 114-123.
- 9. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao," Voltage stability index of radial distribution networks with distributed generation,". *Int. J. Electr. Eng*, 5(6), 791-803.
- 10. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. *International Journal of Computer Science and Network Security (IJCSNS)*, 15(2), 60.
- 11. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671
- 12. Siva Prasad, B. V. V., Sucharitha, G., Venkatesan, K. G. S., Patnala, T. R., Murari, T., & Karanam, S. R. (2022). Optimisation of the execution time using hadoop-based parallel machine learning on computing clusters. In *Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021* (pp. 233-244). Singapore: Springer Nature Singapore.
- 13. Prasad, B. V., & Ali, S. S. (2017). Software–defined networking based secure rout-ing in mobile ad hoc network. *International Journal of Engineering & Technology*, 7(1.2), 229.
- 14. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 15. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 16. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., ... & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 134-138). IEEE.
- 17. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Bhargavi, P. J., Alekhya, A., ... & Nandini, K. (2022, November). Cardiovascular Disease Prediction using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP) (pp. 60-66). IEEE.
- 18. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain

- Using RecTree Algorithm. In Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.
- 19. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In *Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1* (pp. 247-257). Springer Singapore.
- 20. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET'S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES) (pp. 738-741). IEEE.
- 21. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 22. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
- 23. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 24. KATIKA, R., & BALRAM, G. (2013). Video Multicasting Framework for Extended Wireless Mesh Networks Environment. *pp-427-434*, *IJSRET*, 2(7).
- 25. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 26. Prasad, P. S., & Rao, S. K. M. (2017). A Survey on Performance Analysis of ManetsUnder Security Attacks. *network*, 6(7).
- 27. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. *Journal of Electrical Systems*, 20(1s), 900-910.
- 28. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. *Journal of Theoretical and Applied Information Technology*, *100*(13).
- 29. Reddy, P. R. S., Ram, V. S. S., Greshma, V., & Kumar, K. S. Prediction of Heart Healthiness.
- 30. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
- 31. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 32. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 33. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7 S).
- 34. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 35. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 36. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 37. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 38. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 39. Sravan, K., Rao, L. G., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2024). Analyze the Quality of Wine Based on Machine Learning Approach Check for updates. *Data Science and Applications: Proceedings of ICDSA 2023, Volume 3*, 820, 351.
- 40. Chandhar, K., Ramineni, K., Ramakrishna, E., Ramana, T. V., Sandeep, A., & Kalyan, K. (2023,

- December). Enhancing Crop Yield Prediction in India: A Comparative Analysis of Machine Learning Models. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON) (pp. 1-4). IEEE.
- 41. Ramineni, K., Shankar, K., Shabana, Mahender, A., & Mohmmad, S. (2023, June). Detecting of Tree Cutting Sound in the Forest by Machine Learning Intelligence. In *International Conference on Power Engineering and Intelligent Systems (PEIS)* (pp. 303-314). Singapore: Springer Nature Singapore.
- 42. Ashok, J., RAMINENI, K., & Rajan, E. G. (2010). BEYOND INFORMATION RETRIEVAL: A SURVEY. *Journal of Theoretical & Applied Information Technology*, 15.
- 43. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-8). IEEE.
- 44. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 45. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38(Special Issue 1).
- 46. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 47. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, *17*(4), 1265-1282.
- 48. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators' neural network in financial sector. *Multimedia Tools and Applications*, 83(16), 48761-48797.
- 49. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. *Knowledge and Information Systems*, 1-30.
- 50. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012052). IOP Publishing.
- 51. Selvan, M. Arul, and S. Miruna Joe Amali. "RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE." (2024).
- 52. Selvan, M. Arul. "Fire Management System For Indutrial Safety Applications." (2023).
- 53. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
- 54. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
- 55. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
- 56. Selvan, M. A. (2023), INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
- 57. Selvan, M. Arul. "PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM." (2024).
- 58. Selvan, M. Arul. "Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization." (2024).
- 59. Lokhande, M., Kalpanadevi, D., Kate, V., Tripathi, A. K., & Bethapudi, P. (2023). Study of Computer Vision Applications in Healthcare Industry 4.0. In *Healthcare Industry 4.0* (pp. 151-166). CRC Press.
- 60. Tripathi, A. K., Soni, R., & Verma, S. (2022). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mimosa pudica (linn.). *Research Journal of Pharmacy and Technology*, 15(9), 4293-4299.
- 61. Mishra, S., Grewal, J., Wal, P., Bhivshet, G. U., Tripathi, A. K., & Walia, V. (2024). Therapeutic potential of vasopressin in the treatment of neurological disorders. *Peptides*, 174, 171166.
- 62. Koliqi, R., Fathima, A., Tripathi, A. K., Sohi, N., Jesudasan, R. E., & Mahapatra, C. (2023). Innovative and Effective Machine Learning-Based Method to Analyze Alcoholic Brain Activity with Nonlinear Dynamics and Electroencephalography Data. *SN Computer Science*, *5*(1), 113.
- 63. Biswas, D., Sharma, G., Pandey, A., Tripathi, A. K., Pandey, A., & Sahu, P. & Chauhan, P.(2022). Magnetic Nanosphere: Promising approach to deliver the drug to the site of action. *NeuroQuantology*, 20(11), 4038.
- 64. Tripathi, A. K., Diwedi, P., Kumar, N., Yadav, B. K., & Rathod, D. (2022). Trigonella Foenum Grecum L. Seed (Fenugreek) Pharmacological Effects on Cardiovascular and Stress Associated Disease. *NeuroQuantology*, 20(8), 4599.
- 65. Tripathi, A. K., Dwivedi, C. P., Bansal, P., Pradhan, D. K., Parganiha, R., & Sahu, D. An Ethnoveterinary Important Plant Terminalia Arjuna. *International Journal of Health Sciences*, (II), 10601-10607.
- 66. Babbar, R., Kaur, A., Vanya, Arora, R., Gupta, J. K., Wal, P., ... & Behl, T. (2024). Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Current Pharmaceutical Design, 30(24), 1880-1893.

- 67. Sahu, A., Mishra, S., Wal, P., Debnath, B., Chouhan, D., Gunjal, S. D., & Tripathi, A. K. (2024). Novel Quinoline-Based RAF Inhibitors: A Comprehensive Review on Synthesis, SAR and Molecular Docking Studies. *ChemistrySelect*, 9(23), e202400347.
- 68. Vaishnav, Y., Banjare, L., Verma, S., Sharma, G., Biswas, D., Tripathi, A., ... & Manjunath, K. (2022). Computational Method on Hydroxychloroquine and Azithromycin for SARS-CoV-2: Binding Affinity Studies. *Research Journal of Pharmacy and Technology*, 15(12), 5467-5472.
- 69. Ramya, S., Devi, R. S., Pandian, P. S., Suguna, G., Suganya, R., & Manimozhi, N. (2023). Analyzing Big Data challenges and security issues in data privacy. *International Research Journal of Modernization in Engineering Technology and Science*, 5(2023), 421-428.
- 70. Pandian, P. S., & Srinivasan, S. (2016). A Unified Model for Preprocessing and Clustering Technique for Web Usage Mining. *Journal of Multiple-Valued Logic & Soft Computing*, 26.
- 71. Thamma, S. R. T. S. R. (2025). Transforming E-Commerce with Pragmatic Advertising Using Machine Learning Techniques.
- 72. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
- 73. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
- 74. Thamma, S. R. T. S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
- 75. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
- 76. NAVANEETHA, N., & KALYANI, S. (2012). Efficient Association Rule Mining using Indexing Support.
- 77. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 78. Nair, R., Zafrullah, S. N., Vinayasree, P., Singh, P., Zahra, M. M. A., Sharma, T., & Ahmadi, F. (2022). Blockchain-Based Decentralized Cloud Solutions for Data Transfer. *Computational Intelligence and Neuroscience*, 2022(1), 8209854.
- 79. Vinayasree, P., & Reddy, A. M. (2023). Blockchain-Enabled Hyperledger Fabric to Secure Data Transfer Mechanism for Medical Cyber-Physical System: Overview, Issues, and Challenges. *EAI Endorsed Transactions on Pervasive Health and Technology*, 9.
- 80. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- 81. VINAYASREE¹, P., & REDDY, A. M. (2024). A SCALABLE AND SECURE BLOCKCHAIN-BASED HEALTHCARE SYSTEM: OPTIMIZING PERFORMANCE, SECURITY, AND PRIVACY WITH ADAPTIVE TECHNOLOGIES. *Journal of Theoretical and Applied Information Technology*, *102*(22).
- 82. Sahoo, P. K., & Jeripothula, P. (2020). Heart failure prediction using machine learning techniques. *Available at SSRN 3759562*.
- 83. Sahoo, P. K., Chottray, R. K., & Pattnaiak, S. (2012). Research issues on windows event log. *International Journal of Computer Applications*, 41(19).
- 84. Sahoo, P. K. (2018, March). Data mining a way to solve Phishing Attacks. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) (pp. 1-5). IEEE.
- 85. Sahoo, P. K., Chhotray, R. K., Jena, G., & Pattnaik, S. (2013). An implementation of elliptic curve cryptography. *Int. J. Eng. Res. Technol.(IJERT)*, 2(1), 2278-0181.
- 86. Nagesh, O., Kumar, T., & Venkateswararao, V. (2017). A Survey on Security Aspects of Server Virtualization in Cloud Computing. *International Journal of Electrical & Computer Engineering* (2088-8708), 7(3).
- 87. Budaraju, R. R., & Nagesh, O. S. (2023, June). Multi-Level Image Thresholding Using Improvised Cuckoo Search Optimization Algorithm. In 2023 3rd International Conference on Intelligent Technologies (CONIT) (pp. 1-7). IEEE.
- 88. Nagesh, O. S., Budaraju, R. R., Kulkarni, S. S., Vinay, M., Ajibade, S. S. M., Chopra, M., ... & Kaliyaperumal, K. (2024). Boosting enabled efficient machine learning technique for accurate prediction of crop yield towards precision agriculture. *Discover Sustainability*, 5(1), 78.
- 89. Jyothi, A., & Indira, B. (2018). A Two Way Validation Framework for Cloud Storage Security. *International Journal of Engineering & Technology*, 7(2.20), 236-242.
- 90. Rekha, S. B., & Rao, M. V. (2017, September). Methodical activity recognition and monitoring of a person through smart phone and wireless sensors. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI) (pp. 1456-1459). IEEE.
- 91. Sangisetti, B. R., Pabboju, S., & Racha, S. (2019, June). Smart call forwarding and conditional signal monitoring in duos mobile. In *Proceedings of the Third International Conference on Advanced Informatics for*

- Computing Research (pp. 1-11).
- 92. Sangisetti, B. R., & Pabboju, S. (2021). Analysis on human activity recognition using machine learning algorithm and personal activity correlation. *Psychol Educ J*, 58(2), 5754-5760.
- 93. Kumar, T. V. (2018). Project Risk Management System Development Based on Industry 4.0 Technology and its Practical Implications.
- 94. Tambi, V. K., & Singh, N. (2015). Potential Evaluation of REST Web Service Descriptions for Graph-Based Service Discovery with a Hypermedia Focus.
- 95. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
- 96. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 97. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 98. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 99. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
- 100. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 101. Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
- 102. Arora, P., & Bhardwaj, S. Mitigating the Security Issues and Challenges in the Internet of Things (IOT) Framework for Enhanced Security.
- 103. Sakshi, S. (2024). A Large-Scale Empirical Study Identifying Practitioners' Perspectives on Challenges in Docker Development: Analysis using Stack Overflow.
- 104. Sakshi, S. (2023). Advancements and Applications of Generative Artificial Intelligence and show the Experimental Evidence on the Productivity Effects using Generative Artificial Intelligence.
- 105. Sakshi, S. (2023). Assessment of Web Services based on SOAP and REST Principles using Different Metrics for Mobile Environment and Multimedia Conference.
- 106. Sakshi, S. (2022). Design and Implementation of a Pattern-based J2EE Application Development Environment.
- 107. Sharma, S., & Dutta, N. (2018). Development of New Smart City Applications using Blockchain Technology and Cybersecurity Utilisation. Development, 7(11).
- 108. Sharma, S., & Dutta, N. (2017). Development of Attractive Protection through Cyberattack Moderation and Traffic Impact Analysis for Connected Automated Vehicles. Development, 4(2).
- 109. Sharma, S., & Dutta, N. (2015). Evaluation of REST Web Service Descriptions for Graph-based Service Discovery with a Hypermedia Focus. Evaluation, 2(5).
- 110. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 111. Sharma, S., & Dutta, N. (2015). Cybersecurity Vulnerability Management using Novel Artificial Intelligence and Machine Learning Techniques. Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
- 112. Sharma, S., & Dutta, N. (2017). Classification and Feature Extraction in Artificial Intelligence-based Threat Detection using Analysing Methods.
- $113. \hspace{0.5cm} \textbf{Sharma, S., \& Dutta, N. (2016)}. \hspace{0.5cm} \textbf{Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.}$
- 114. Sharma, S., & Dutta, N. (2015). Distributed DNN-based Middleware for Cyberattack Detection in the Smart IOT Ecosystem: A Novel Framework and Performance Evaluation Technique.
- 115. Bhat, S. (2015). Technology for Chemical Industry Mixing and Processing. Technology, 2(2).
- 116. Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
- 117. Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
- 118. Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and Optimisation.
- 119. Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
- 120. Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
- 121. Bhat, S. (2023). Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
- 122. Bhat, S. (2019). Data Centre Cooling Technology's Effect on Turbo-Mode Efficiency.

- 123. Bhat, S. (2018). The Impact of Data Centre Cooling Technology on Turbo-Mode Efficiency.
- 124. Archana, B., & Sreedaran, S. (2023). Synthesis, characterization, DNA binding and cleavage studies, in-vitro antimicrobial, cytotoxicity assay of new manganese (III) complexes of N-functionalized macrocyclic cyclam based Schiff base ligands. Polyhedron, 231, 116269.
- 125. Archana, B., & Sreedaran, S. (2022). New cyclam based Zn (II) complexes: effect of flexibility and para substitution on DNA binding, in vitro cytotoxic studies and antimicrobial activities. Journal of Chemical Sciences, 134(4), 102.
- 126. Archana, B., & Sreedaran, S. (2021). POTENTIALLY ACTIVE TRANSITION METAL COMPLEXES SYNTHESIZED AS SELECTIVE DNA BINDING AND ANTIMICROBIAL AGENTS. European Journal of Molecular and Clinical Medicine, 8(1), 1962-1971.
- 127. Rasappan, A. S., Palanisamy, R., Thangamuthu, V., Dharmalingam, V. P., Natarajan, M., Archana, B., ... & Kim, J. (2024). Battery-type WS2 decorated WO3 nanorods for high-performance supercapacitors. Materials Letters, 357, 135640.
- 128. Arora, P., & Bhardwaj, S. (2017). Investigation and Evaluation of Strategic Approaches Critically before Approving Cloud Computing Service Frameworks.
- 129. Arora, P., & Bhardwaj, S. (2017). Enhancing Security using Knowledge Discovery and Data Mining Methods in Cloud Computing.
- 130. Arora, P., & Bhardwaj, S. (2017). Combining Internet of Things and Wireless Sensor Networks: A Security-based and Hierarchical Approach.
- 131. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. machine learning, 8(7).
- 132. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
- 133. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
- 134. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.
- 135. Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. Methods, 8(2).