BRAIN TUMOR DETECTION

Dr G. Prabhakar Raju Ch. Sindhuja, B. Chandana, Obed Emmanuel

¹Assistant Professor, Department of Computer science and Engineering, Anurag University, Hyderabad, Telangana – 500088, India.

¹prabhakarrajucse@anurag.edu.in
²21eg105b11@anurag.edu.in
³21eg105b09@anurag.edu.in
⁴21eg105b38@anuarg.edu.in

Abstract. In the planning and quantitative assessment of brain tumors, determining the tumor extent is a critical challenge. MRI is a non-invasive technology that has emerged as a first-line diagnostic tool for brain tumors that does not require ionizing radiation. Gliomas are the most aggressive brain tumors, with a life expectancy of only a few months in the most advanced stages. Manual segmentation is a time-consuming procedure in clinical practice, and its success is greatly dependent on the operator's expertise. Hence, our paper aims to develop a system wherein it takes in the MRI scan images as input and classifies if the specific patient has Brain Tumor or not using the VGG-19 architecture of Convolutional Neural Networks.

Keywords. Manual Segmentation, Convolutional Neural Networks

INTRODUCTION

Cancer has evolved into a highly lethal illness that affects people of all ages. In 2020, 308,102 persons worldwide were expected to be identified with a primary spinal cord or brain cord tumor [1]. Brain tumors are the tenth largest cause of mortality [2]. A tissue anomaly brings it on in the central spine or the brain. As a result, it causes problems with brain function. Although the etiology of brain tumors is uncertain, radiation exposure and family history might increase the risk [3]. Early diagnosis and identification of brain tumors are critical for successful therapy. According to a WHO assessment [1], [4] brain cancers are divided into many categories, such as glioma, meningioma, metastasis, sarcoma, and so on, as shown in figure 1. Many of the most present investigation initiatives are to divide brain tumor types into four classes. Recent developments in medical image processing, together with the use of computer-assisted diagnosis (CAD) as well as magnetic resonance imaging (MRI), make tumor portion detection much more effortless. Nonetheless, identifying and classifying brain tumor kinds and grades remains a tedious task. In this study, we describe a CAD-based augmentation-based model for brain tumor detection and prediction.

CT scans and MRI diagnosis are used to detect brain tumor. MRI uses magnetic fields, instead of x-rays, to produce detailed images of the body. Accurate detection is very important in brain tumor detection. The rate of accuracy can be increased by using computer aided system. This system can help the radiologist to detect brain tumor more appropriately. Our experiment provides a discussion about a new compute raided method to improve the accuracy rate of the detection of brain tumor along with the calculation of the tumor size and its location. Besides it helps to determine whether the tumor is malignant or not. Moreover, when a neurologist decides to dean operation, tumor's width, height, area or thickness matters. This paper provides such a way by which we can compute the surface area of the tumor. It is obviously a vital factor in surgery.

² Department of Computer science and Engineering, Anurag University, Hyderabad, Telangana – 500088, India.

³Department of Computer science and Engineering, Anurag University, Hyderabad, Telangana – 500088, India.

⁴Department of Computer science and Engineering, Anurag University, Hyderabad, Telangana – 500088, India.

LITERATURE SURVEY

TABLE 1. Review Paper 1

Resource Paper Name	Description	Limitations
"Brain Cancer Diagnosis Using GGD Analysis"	Proposes a GGD (Generalized Gaussian Distribution) analysis technique for bone sarcoma detection using image processing and medical imaging	Does not discuss real-time implementation or large-scale dataset testing

TABLE 2 . Review Paper 2

Resource Paper Name	Description	Limitations
"Detection &	Heas Connected Component Labelling	A NIN magnines a large detect for
"Detection & Classification of Tumor Cells from Brain MR Imagery Using Connected Component Analysis & Neural Network"	Uses Connected Component Labelling to detect tumors and trains an Artificial Neural Network (ANN) on MR images for classification. The approach maintains key image edges using Anisotropic Diffusion Filter (ADF).	ANN requires a large dataset for training; may not generalize well to diverse patient populations.

TABLE 3. Review Paper 3

Resource Paper Name	Description	Limitations
"Analysis of Brain Cancer and	Compares edge-based and region-	The accuracy depends on image
Features for Prediction Using	based segmentation methods for	quality; segmentation may
Computer Vision Techniques"	detecting osteosarcoma from X-	struggle with unclear tumor
	ray images using MATLAB.	boundaries.

PROPOSED SYSTEM

The data that we used is the BRATS dataset. This dataset contains the segmented images of the brain tissues. After the image has been segmented, there are 3 classes namely Necrotic and Non-Enhancing tumour (NCR/NET), Peritumoral Edema (ED) and GD-Enhancing tumour (ET). There are about 220 images in the training dataset. To segment the brain MRI we use a popular network called The U-Net architecture is built upon the Fully Convolutional Network and modified in a way that it yields better segmentation in medical imaging. Compared to FCN-8, the two main differences are. U-net is symmetric. The skip connections between the down sampling

Advantages over the previous system

- Less time Consumtion
- High accuracy
- Future-Enhancements
- Scalability

operator instead of a sum. These skip connections intend to provide local information to the global information while up sampling. Because of its symmetry, the network has a large number of feature maps in the up-sampling path, which allows transferring information. By comparison, the basic FCN architecture only had number of classes feature maps in its up-sampling path.

Model Implementation

1. System Architecture

Convolutional layers consist of a rectangular grid of neurons, which takes a rectangular region of previous layer as input. Moreover, there may be several grids in each convolutional neural network layer, using potentially different filters. Typically, there is a pooling layer after each convolutional layer, which are subsampled from the previous convolutional layer. This pooling can be carried out in many ways, such as the average, maximum, and so on. Finally, after several convolutional layers and max pooling layers, a fully connected layer (or several layers) will be built using outputs from previous layers (maybe the fully connected, pooling) which is used as a compact feature to describe the whole input image of retina. The network is optimized by back propagation and stochastic gradient descent. Note that the backward and forward propagations may differ depending on the layer types.

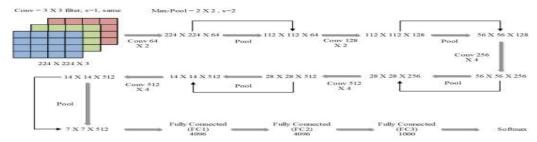
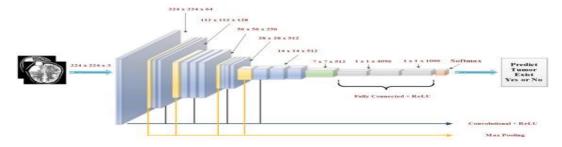



Figure 14. VGG 19 Architecture Walkthrough

2. Dataset Collection

Around 250 MRI images were used in the proposed network 60-70% of the data is used in training, whereas 30-40% in testing The proposed methodology contains two main phases. The first is a training phase which concerns the preparation and augmentation of data followed by a CNN model. The second phase is the test phase in which we pre-process our test image, classify the image to find out if the tumor exists and finally segment the tumor according to the characteristics extracted from our model. We use in this work two different datasets. The first one is acquired from Hospital and others are downloaded from Google Images.

3.Preprocessing Stage

In the windowing procedure, the radiography is cut into smaller square segments (windows), which are here used for training and testing the CNN. Figure 2 shows an example of the windowing procedure applied to the radiography shown in Figure 1. Experiments (not shown here) were performed in order to compare the performance of the system for 50×50 pixels and 100×100 pixels windows. Best results were obtained for 100×100 windows; this size is used in the experiments presented in Section III. The 50×50 windows resulted in incorrectly classifying all examples with osteosarcoma, i.e., the model was unable to learn the relevant characteristics for the classification of tumors. Despite resulting in more examples for training, the 50×50 windows have a smaller amount of information relevant for the classification. This can be seen in the example presented in Figure 3, where it is easier to identify relevant characteristics in the window with 100×100 pixels. In the labeling procedure, the windows used for training and testing the classifier are automatically labeled into one of two classes. The labels indicate the presence (0) or absence (1) of a tumor in the window. In order to create the dataset for training and testing the CNN, a radiologist manually marked the regions of the radiographs with tumor (osteosarcoma). These regions are represented in green in Figure 2. Using the image marked by the

radiologist and the windowing procedure, the labeling procedure checks the percentage of the green color in the window. If the percentage is higher than a threshold, the window is marked with 0; otherwise it is marked with 1 (Figure 2). The threshold is equal to 19% in the experiments presented in Section III. This threshold was obtained in initial experiments (not shown here), where it was observed that thresholds with higher values resulted, for some radiographs, in the labeling of any window with tumor. The threshold equals to 19% ensures that at least one window is labeled with tumor on each of the images of the dataset.

4. Classification

Python libraries and routines, such as TensorFlow [16] and Keras [17], were used in this work for implementing the CNNs. The open source library Pillow was used for image manipulation [18] and Google Colab [19] for running the CNNs. Google Colab is a free cloud service that offers free access to GPUs and easy sharing of codes. We propose two approaches for generating the CNN in the computer-aided diagnosis system. 1) CNN trained from scratch: The input of the CNN is the 100×100 pixels images and one single output indicates the presence or absence of osteosarcoma in the window. Experiments (not shown here) with a single radiography were carried out to select the architecture and hiper-parameters of the CNN trained from scratch. Accuracy was used to evaluate CNNs with different hiper-parameters and architecture. The model with best results has five convolutional layers with 3×3 windows. The first two convolutional layers have 128 filters each, while the

third and fourth layers have 64 filters each and the fifth layer has 32 filters. After the second, fourth and fifth convolutional layers, one MaxPooling layer is applied. MaxPooling layers have 2×2 windows. Finally, three fully connected layers, with respectively 8, 4 and 1 neurons, are added. In all convolutional and dense layers, the ReLu activation function is used, except in the last dense layer, where sigmoid function is used. Batch normalization is applied. The Adam optimizer with default parameters for TensorFlow is employed for adjusting the weights of the CNN

5. Testing and Validation

With the provided images in dataset, the images will be classified into training images and testing images. With respect to the testing images, the model will be validated.

Training Dataset :-

Out of total images in the dataset 80% images are used for training.

Test Dataset :-

The images left in the dataset after training is used for testing.

80% of the data was given for training to the model, with the left 20% testing was done. Each epoch different weights are provided to layers by the model.

Tools Used

The project utilizes several tools and libraries for image processing, deep learning, and model deployment. TensorFlow and Keras are the primary deep learning frameworks used for training the VGG19-based CNN model for brain tumor classification. OpenCV is employed for image preprocessing techniques like noise reduction, histogram equalization, and edge detection. Matplotlib is used for visualizing the training progress and model results. The dataset is processed and trained using Google Colab, which provides GPU acceleration for faster computation. Additionally, Flask is used for deploying the model in a web-based application, with SQLite/MySQL handling database operations for storing patient MRI records and classification results.

Project Specification

Category Details	Details	
Framework	Deep Learning (CNN - VGG19 Architecture) for brain tumor classification.	
Dataset	Dataset BRATS Dataset – Includes segmented MRI images of brain tumors categorized	
	into three	

Image Processing	- Preprocessing Techniques: Noise reduction, histogram equalization, grayscale
	conversion.
	- Feature Extraction: Edge detection (Sobel, Prewitt, Laplacian of Gaussian), Texture
	Analysis
Deep learning	VGG19 (Transfer Learning-based CNN) – Used for brain tumor classification and
	segmentation.
Training &	- Training Data: 60-70% of MRI images.
Testing	- Testing Data: 30-40% of MRI images.
	- Image Resizing: 224×224 pixels for CNN processing.
Performance	Accuracy Improvement: Model initially had 16% accuracy (with 1 epoch), improved to
Metrics	25% (after 50 epochs), and further optimized for higher accuracy.
Libraries & Tools	TensorFlow & Keras – Deep learning framework. OpenCV – Image preprocessing
	Matplotlib – Visualization of results. Google Colab – Model training with GPU support.
Classification	CNN with Convolutional & Pooling Layers to extract relevant tumor features.
Approach	- Final Prediction: Outputs two probabilities for binary classification (Tumor/No
	Tumor)
Programming	Python – Used for image preprocessing, model training, and testing.
Language	
User Interface	Flask-based Web Application (optional). SQLite/MySQL Database for storing user
	uploads and results.

RESULTS

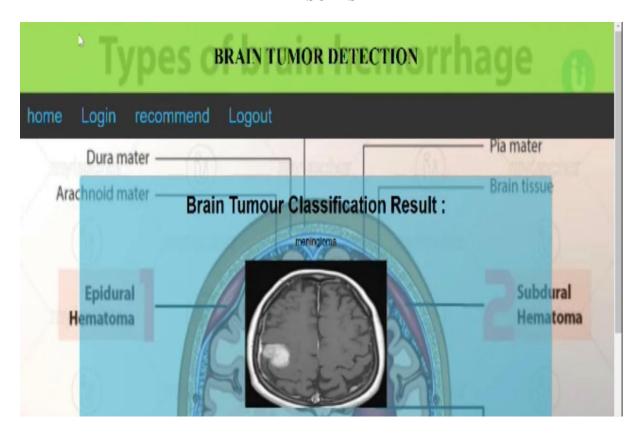


Figure 1

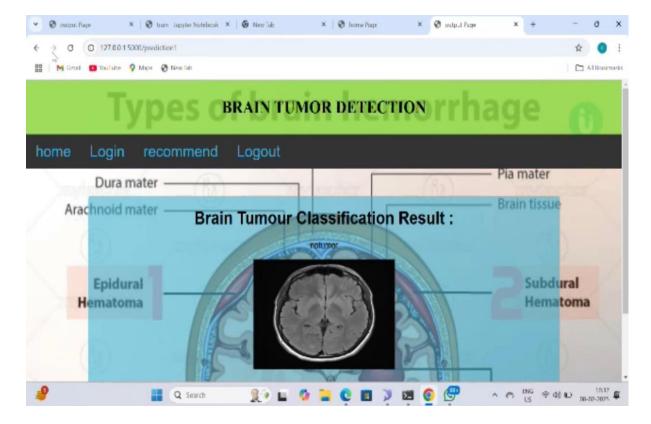


Figure 2

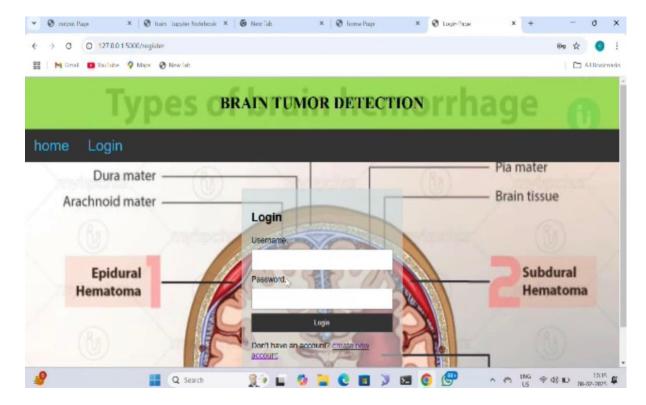


Figure 3

Figure 4

CONCLUSION

The VGG19as a basis layer and data augmentation approach were used to create a brain tumors detection and prediction with classification in this research. The literature component of the study included a comprehensive assessment of several CNN designs and their limitations. Then, using data augmentation, we demonstrated how we may increase performance on restricted brain tumors datasets. The model's capacity and accuracy in identifying images were shown to be extremely motivating in experimental findings. Even in an MRI dataset, our data augmentation-based method demonstrated great detection efficiency and strong assessment metrics value.

FUTURE ENHANCEMENTS

We intend to investigate more complicated architecture, a wider range of datasets, and additional data augmentation approaches in the future.

REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Balakrishna, G., Murthy, G. V., Rao, M. N., & Narayana, M. V. (2022). Implementing Solar Power Smart Irrigation System. In *Innovations in Computer Science and Engineering: Proceedings of the Ninth ICICSE*, 2021 (pp. 561-567). Singapore: Springer Singapore.
- 7. Reddy, S. R., & Murthy, G. V. (2025). Cardiovascular Disease Prediction Using Particle Swarm Optimization and Neural Network Based an Integrated Framework. *SN Computer Science*, 6(2), 186.

- 8. Murthy, G. V., & Kumar, V. V. (2014). A new model of array grammar for generating connected patterns on an image neighborhood. *arXiv preprint arXiv:1407.8337*.
- 9. Murthy, G. V., SwathiReddy, M., & Balakrishna, G. (2019, May). Big Data Analytics for Popularity Prediction. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012051). IOP Publishing.
- 10. Kumar, K. M., Latha, P. S., & Murthy, G. V. (2017). Two Stage: Smart Crawler for Analysis of Web Data.
- 11. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 12. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 13. Ramakrishna, C., Kumar, G. S., & Reddy, P. C. S. (2021). Quadruple band-notched compact monopole UWB antenna for wireless applications. *Journal of Electromagnetic Engineering and Science*, 21(5), 406-416.
- 14. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 15. Ramaiah, M., Chithanuru, V., Padma, A., & Ravi, V. (2022). A review of security vulnerabilities in industry 4.0 application and the possible solutions using blockchain. *Cyber Security Applications for Industry* 4.0, 63-95.
- 16. Padma, A., Chithanuru, V., Uppamma, P., & VishnuKumar, R. (2024). Exploring Explainable AI in Healthcare: Challenges and Future Directions. In *Analyzing Explainable AI in Healthcare and the Pharmaceutical Industry* (pp. 199-233). IGI Global.
- 17. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 18. Prashanth, J. S., & Nandury, S. V. (2019). A Cluster—based Approach for Minimizing Energy Consumption by Reducing Travel Time of Mobile Element in WSN. *International Journal of Computers Communications & Control*, 14(6), 691-709.
- 19. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, 1(1), 31-35.
- 20. Shyam, D. N. M., & Hussain, M. A. (2023). Mutual authenticated key agreement in Wireless Infrastructure-less network by Chaotic Maps based Diffie-Helman Property. *Fusion: Practice & Applications*, 13(2).
- Shyam, D. N. M., & Hussain, M. A. (2023). A Naive Bayes-Driven Mechanism for Mitigating Packet-Dropping Attacks in Autonomous Wireless Networks. *Ingenierie des Systemes d'Information*, 28(4), 1019.
- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, 13(2), 2749-2757.
- 23. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 25. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
- 26. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. *International Journal of Advanced Computer Science and Applications*, 13(7).
- 27. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 28. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2024). Extraction for Big Data Cyber Security Analytics. *Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2023*, 993, 365.

- 29. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2023, December). Security-Aware Information Classification Using Attributes Extraction for Big Data Cyber Security Analytics. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 365-373). Singapore: Springer Nature Singapore.
- 30. Lavanya, P. (2024). Personalized Medicine Recommendation System Using Machine Learning.
- 31. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 32. Lavanya, P. (2024). Price Comparison of GeM Products with other eMarketplaces.
- 33. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 34. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 35. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 36. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 37. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, *13*(1), 159-168.
- 38. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3), 322-326
- 39. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. *Journal of Electrical Systems*, 20, 900-910.
- 40. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. *Journal of Theoretical and Applied Information Technology*, 100(13).
- 41. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions*, *Hyderabad*, *AP*, *India*.
- 42. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 43. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 44. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, 30(3), 322-326.
- 45. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 46. Ujwala, B., & Reddy, P. R. S. (2016). An effective mechanism for integrity of data sanitization process in the cloud. *European Journal of Advances in Engineering and Technology*, *3*(8), 82-84.
- 47. DASTAGIRAIAH, D. (2024). A System for Analysing call drop dynamics in the telecom industry using Machine Learning and Feature Selection. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 48. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 49. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 50. Latha, S. B., Dastagiraiah, C., Kiran, A., Asif, S., Elangovan, D., & Reddy, P. C. S. (2023, August). An Adaptive Machine Learning model for Walmart sales prediction. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 988-992). IEEE.
- 51. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child's Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.

- 52. Selvaprasanth, P., Karthick, R., Meenalochini, P., & Prabaharan, A. M. (2025). FPGA implementation of hybrid Namib beetle and battle royale optimization algorithm fostered linear phase finite impulse response filter design. *Analog Integrated Circuits and Signal Processing*, 123(2), 33.
- 53. Deepa, R., Karthick, R., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. *Computer Standards & Interfaces*, 92, 103934.
- 54. Kumar, T. V., Karthick, R., Nandhini, C., Annalakshmi, M., & Kanna, R. R. (2025). 20 GaN Power HEMT-Based Amplifiers. *Circuit Design for Modern Applications*, 320.
- 55. Velayudham, A., Karthick, R., Sivabalan, A., & Sathya, V. (2025). IoT enabled smart healthcare system for COVID-19 classification using optimized robust spatiotemporal graph convolutional networks. *Biomedical Signal Processing and Control*, 100, 107104.
- 56. Gayathri, P., Balamurugan, J., Gowthami, M., Usha, R., Karthick, R., & Selvan, R. S. (2025). Factors Influencing Customers' Inclination to buy Green Products: An Indian Perspective. In *Elevating Brand Loyalty With Optimized Marketing Analytics and AI* (pp. 185-202). IGI Global Scientific Publishing.
- 57. Ramkumar, G., Bhuvaneswari, J., Venugopal, S., Kumar, S., Ramasamy, C. K., & Karthick, R. (2025). Enhancing customer segmentation: RFM analysis and K-Means clustering implementation. In *Hybrid and Advanced Technologies* (pp. 70-76). CRC Press.
- Tamilselvi, M., Kalaivani, S. S. S., Sunderasan, V., Sailaja, K., Gopal, D., & Karthick, R. (2025). Deep learning for object detection and identification. In *Hybrid and Advanced Technologies* (pp. 218-223). CRC Press.
- 59. Sidharth, S. (2022). Zero Trust Architecture: A Key Component of Modern Cybersecurity Frameworks.
- 60. Sidharth, S. (2018). Optimized Cooling Solutions for Hybrid Electric Vehicle Powertrains.
- 61. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 62. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 63. Turlapati, V. R., Thirunavukkarasu, T., Aiswarya, G., Thoti, K. K., Swaroop, K. R., & Mythily, R. (2024, November). The Impact of Influencer Marketing on Consumer Purchasing Decisions in the Digital Age Based on Prophet ARIMA-LSTM Model. In 2024 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-6). IEEE.
- 64. Raju, P., Arun, R., Turlapati, V. R., Veeran, L., & Rajesh, S. (2024). Next-Generation Management on Exploring AI-Driven Decision Support in Business. In *Optimizing Intelligent Systems for Cross-Industry Application* (pp. 61-78). IGI Global.
- 65. Sreekanthaswamy, N., Anitha, S., Singh, A., Jayadeva, S. M., Gupta, S., Manjunath, T. C., & Selvakumar, P. (2025). Digital Tools and Methods. *Enhancing School Counseling With Technology and Case Studies*, 25.
- 66. Sreekanthaswamy, N., & Hubballi, R. B. (2024). Innovative Approaches To Fmcg Customer Journey Mapping: The Role Of Block Chain And Artificial Intelligence In Analyzing Consumer Behavior And Decision-Making. Library of Progress-Library Science, Information Technology & Computer, 44(3). Deshmukh, M. C., Ghadle, K. P., & Jadhav, O. S. (2020). Optimal solution of fully fuzzy LPP with symmetric HFNs. In Computing in Engineering and Technology: Proceedings of ICCET 2019 (pp. 387-395). Springer Singapore.
- 67. Chinchodkar, K. N., & Jadhav, O. S. (2017). Development of mathematical model for the solid waste management on dumping ground at Mumbai for the reduction of existence cost. *Int. J. Statist. Syst*, 12, 145-155.
- 68. Kalluri, V. S. Optimizing Supply Chain Management in Boiler Manufacturing through AI-enhanced CRM and ERP Integration. *International Journal of Innovative Science and Research Technology (IJISRT)*.
- 69. Kalluri, V. S. Impact of AI-Driven CRM on Customer Relationship Management and Business Growth in the Manufacturing Sector. *International Journal of Innovative Science and Research Technology (IJISRT)*.
- 70. Kalluri, S. V. S., & Narra, S. (2024). Predictive Analytics in ADAS Development: Leveraging CRM Data for Customer-Centric Innovations in Car Manufacturing. *vol*, 9, 6.
- 71. Al-Ghanimi, M. G., Hanif, O., Jain, M. V., Kumar, A. S., Rao, R., Kavin, R., ... & Hossain, M. A. (2022, December). Two TS-Fuzzy Controllers based Direct Torque Control of 5-Phase Induction Motor. In 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1-6). IEEE.
- 72. Sameera, K., & MVR, S. A. R. (2014). Improved power factor and reduction of harmonics by using dual boost converter for PMBLDC motor drive. *Int J Electr Electron Eng Res*, 4(5), 43-51.

- 73. Srinivasu, B., Prasad, P. V. N., & Rao, M. R. (2006, December). Adaptive controller design for permanent magnet linear synchronous motor control system. In 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1-6). IEEE.
- 74. Rao, M. R., & Prasad, P. V. N. (2014). Modelling and Implementation of Sliding Mode Controller for PMBDC Motor Drive. *International journal of advanced research in electrical, electronics and instrumentation engineering*, 3(6).
- 75. Sidharth, S. (2017). Real-Time Malware Detection Using Machine Learning Algorithms.
- 76. Sidharth, S. (2017). Access Control Frameworks for Secure Hybrid Cloud Deployments.
- 77. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 78. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
- 79. Jadhav, V. S., & Jadhav, O. S. (2019). Solving flow-shop scheduling problem to minimize total elapsed time using fuzzy approach. *International Journal of Statistics and Applied Mathematics*, 4(5), 130-133.
- 80. Deshmukh, M., Ghadle, K., & Jadhav, O. (2020). An innovative approach for ranking hexagonal fuzzy numbers to solve linear programming problems. *International Journal on Emerging Technologies*, 11(2), 385-388.
- 81. Sidharth, S. (2016). Establishing Ethical and Accountability Frameworks for Responsible AI Systems.
- 82. Sidharth, S. (2015). AI-Driven Detection and Mitigation of Misinformation Spread in Generated Content.
- 83. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 84. Tambi, V. K., & Singh, N. (2015). Potential Evaluation of REST Web Service Descriptions for Graph-Based Service Discovery with a Hypermedia Focus.
- 85. Patil, R. D., & Jadhav, O. S. (2016). Some contribution of statistical techniques in big data: a review. *International Journal on Recent and Innovation Trends in Computing and Communication*, 4(4), 293-303.
- 86. Jadhava, V. S., Buktareb, S. U., & Jadhavc, O. S. (2024). Ranking of Octagonal Fuzzy Numbers for Solving Fuzzy Job Sequencing Problem Using Robust Ranking Technique. *Journal of Statistics, Optimization and Data Science*, 1(2), 22-28.
- 87. Sidharth, S. (2015). Privacy-Preserving Generative AI for Secure Healthcare Synthetic Data Generation.
- 88. Sidharth, S. (2018). Post-Quantum Cryptography: Readying Security for the Quantum Computing Revolution.
- 89. Tambi, V. K., & Singh, N. (2019). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications. *Development*, 7(11).
- 90. Chaudhari, S. A., Gawali, B. W., & Jadhav, O. S. (2022). Statistical analysis of EEG data for attention deficit hyperactivity disorder. *Journal of Positive School Psychology*, 4046-4053.
- 91. Jadhav, S., Machale, A., Mharnur, P., Munot, P., & Math, S. (2019, September). Text based stress detection techniques analysis using social media. In 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) (pp. 1-5). IEEE.
- 92. Thepade, D. S., Mandal, P. R., & Jadhav, S. (2015). Performance Comparison of Novel Iris Recognition Techniques Using Partial Energies of Transformed Iris Images and Energy CompactionWith Hybrid Wavelet Transforms. In *Annual IEEE India Conference (INDICON)*.
- 93. Kiran, A., Sonker, A., Jadhav, S., Jadhav, M. M., Naga Ramesh, J. V., & Muniyandy, E. (2024). Secure Communications with THz Reconfigurable Intelligent Surfaces and Deep Learning in 6G Systems. *Wireless Personal Communications*, 1-17.
- 94. Anitha, C., Tellur, A., Rao, K. B., Kumbhar, V., Gopi, T., Jadhav, S., & Vidhya, R. G. (2024). Enhancing Cyber-Physical Systems Dependability through Integrated CPS-IoT Monitoring. *International Research Journal of Multidisciplinary Scope*, *5*(2), 706-713.
- 95. Vandana, C. P., Basha, S. A., Madiajagan, M., Jadhav, S., Matheen, M. A., & Maguluri, L. P. (2024). IoT resource discovery based on multi faected attribute enriched CoAP: smart office seating discovery. *Wireless Personal Communications*, 1-18.
- 96. Jadhav, S., Durairaj, M., Reenadevi, R., Subbulakshmi, R., Gupta, V., & Ramesh, J. V. N. (2024). Spatiotemporal data fusion and deep learning for remote sensing-based sustainable urban planning. *International Journal of System Assurance Engineering and Management*, 1-9.
- 97. Jadhav, S., Chaudhari, V., Barhate, P., Deshmukh, K., & Agrawal, T. (2021). Extreme Gradient Boosting for Predicting Stock Price Direction in Context of Indian Equity Markets. In *Intelligent Sustainable Systems: Selected Papers of WorldS4 2021, Volume 2* (pp. 321-330). Singapore: Springer Nature Singapore.
- 98. Jadhav, S., Chaudhari, V., Barhate, P., Deshmukh, K., & Agrawal, T. (2021). REVIEW PAPER ON: ALGORITHMIC TRADING USING ARTIFICIAL INTELLEGENCE.

- 99. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
- 100. Alsudairy, M. A. T., & Vasista, T. G. K. (2014, May). CRASP—a strategic methodology perspective for sustainable value chain management. In *Proceedings of the 23rd IBIMA Conference*.
- 101. Vasista, T. G. K., & AlAbdullatif, A. M. (2015). Turning customer insights contributing to VMI based decision support system in demand Chain management. *International Journal of Managing Value and Supply Chains*, 6(2), 37-45.
- 102. AlSudairi, M., & Vasista, T. G. K. (2012, September). Service design systems driven innovation approach for total innovation management. In *Proceedings of the 7th European Conference on Innovation and Entrepreneurship: ECIE* (p. 8). Academic Conferences Limited.
- 103. Vasista, T. G. K. (2007). Wise CRM engine. Synergy-The Journal of Marketing, 5(1), 123-127.
- 104. Vasista, T. G. K. (2016). Thoughtful approaches to implementation of electronic rulemaking. *Int. J. Manag. Pub. Sect. Inf. Commun. Technol*, 7(2), 43-53.
- 105. Vasista, T. G. K. (2015). Strategic Business Challenges in Cloud Systems. *Int. J. Cloud Comput. Serv. Archit.*, 5(4), 1-3.
- 106. Vasista, T. G. K. (2013). System, spiritual and philosophical perspectives of human life and the role of governance in a socio-economic setting. *Unpublished Paper Developed at King Saud University, Riyadh, KSA*.
- 107. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
- 108. Kalaiselvi, B., & Thangamani, M. (2020). An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. *Measurement*, 162, 107885.
- 109. Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, D., Vijayalakshmi, R., Thangamani, M., ... & Adigo, A. G. (2022). Machine learning-based secure data acquisition for fake accounts detection in future mobile communication networks. *Wireless Communications and Mobile Computing*, 2022(1), 6356152.
- 110.Geeitha, S., & Thangamani, M. (2018). Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. *Journal of medical systems*, 42(11), 225.
- 111. Thangamani, M., & Thangaraj, P. (2010). Integrated Clustering and Feature Selection Scheme for Text Documents. *Journal of Computer Science*, *6*(5), 536.
- 112.Gangadhar, C., Chanthirasekaran, K., Chandra, K. R., Sharma, A., Thangamani, M., & Kumar, P. S. (2022). An energy efficient NOMA-based spectrum sharing techniques for cell-free massive MIMO. *International Journal of Engineering Systems Modelling and Simulation*, 13(4), 284-288.
- 113. Narmatha, C., Thangamani, M., & Ibrahim, S. J. A. (2020). Research scenario of medical data mining using fuzzy and graph theory. *International Journal of Advanced Trends in Computer Science and Engineering*, 9(1), 349-355.
- 114. Thangamani, M., & Thangaraj, P. (2013). Fuzzy ontology for distributed document clustering based on genetic algorithm. *Applied Mathematics & Information Sciences*, 7(4), 1563-1574.
- 115. Surendiran, R., Aarthi, R., Thangamani, M., Sugavanam, S., & Sarumathy, R. (2022). A Systematic Review Using Machine Learning Algorithms for Predicting Preterm Birth. *International Journal of Engineering Trends and Technology*, 70(5), 46-59.
- 116. Thangamani, M., & Thangaraj, P. (2010). Ontology based fuzzy document clustering scheme. *Modern Applied Science*, 4(7), 148.
- 117. Ibrahim, S. J. A., & Thangamani, M. (2018, November). Momentous Innovations in the prospective method of Drug development. In *Proceedings of the 2018 International Conference on Digital Medicine and Image Processing* (pp. 37-41).
- 118.Thamma, S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
- 119. Arun, A., Ali A. Alalmai, and D. Gunaseelan. "Operational Need and Importance of Capacity Management into Hotel Industry—A Review." (2020).
- 120. Gunaseelan, D., & Kumar, G. R. (2024). An umbrella view on food habits in the context of health and sustainability for sports persons. *Salud, Ciencia y Tecnología-Serie de Conferencias*, (3), 890.
- 121. Gunaseelan, D., & Arun, A. Tourist Destination Satisfaction: Analysis of Kanyakumari the Spot with Scenic Beauty and Spiritual Temples. *Emperor Journal of Economics and Social Science Research*, 3(1).
- 122. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
- 123. Kumar, J. S., Archana, B., Muralidharan, K., & Kumar, V. S. (2025). Graph Theory: Modelling and Analyzing Complex System. *Metallurgical and Materials Engineering*, *31*(3), 70-77.
- 124. Kumar, J. S., Archana, B., Muralidharan, K., & Srija, R. (2025). Spectral Graph Theory: Eigen Values Laplacians and Graph Connectivity. *Metallurgical and Materials Engineering*, *31*(3), 78-84.

- 125. Srija, R., Kumar, J. S., & Muralidharan, K. (2025). An improvement in estimating the population mean by using quartiles and correlation coefficient. *Mathematics in Engineering, Science & Aerospace (MESA)*, 16(1).
- 126.Kumar, J. S., Murthy, S., Kumar, B. R., & Solaiappam, S. (2017, January). p-Value analyze the set of optimal value in MOFTP. In 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 1-5). IEEE.
- 127. Anandasubramanian, C. P., & Selvaraj, J. (2024). NAVIGATING BANKING LIQUIDITY-FACTORS, CHALLENGES, AND STRATEGIES IN CORPORATE LOAN PORTFOLIOS. *Tec Empresarial*, 6(1).
- 128. Madem, S., Katuri, P. K., Kalra, A., & Singh, P. (2023, May). System Design for Financial and Economic Monitoring Using Big Data Clustering. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-7). IEEE.
- 129. Srikanth, V., & Dhanapal, D. R. (2012). E-commerce online security and trust marks. *International Journal of Computer Engineering and Technology*, 3(2), 238-255.
- 130.Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 131. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 132.Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 133. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 134. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 135. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 136.Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 137. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 138. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 139. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.