Cloud-Enabled AI-Driven Interactive Travel Planning and Booking System

¹Mrs. B. Ujwala, ²A. Saipriya, ³DVS Akhheel, ⁴K. Merin

¹Assistant Professor, Department of Computer Science and Engineering, Anurag University, Telangana, India ^{2,3,4} Student, Department of Computer Science and Engineering, Anurag University, Telangana, India

> ¹ ujwalacse@anurag.edu.in, ² 21eg105b03@anurag.edu.in, ³ 21eg105b14@anurag.edu.in, ⁴ 21eg105b25@anurag.edu.in

ABSTRACT. Today's travel planning demands solutions that are smart, flexible, and fast to meet people's needs. Traditional systems often find it hard to expand, respond slowly, and don't connect well because they rely on server-based setups. A new travel planning platform based on cloud technology solves these problems by combining cloud computing with AI for a more personalized experience. The system also enables real-time booking of flights, accommodations, and activities, ensuring accurate and up-to-date information through API integrations. Results indicate that the cloud-based architecture significantly enhances system reliability, reduces latency, and improves user engagement by offering a unified and intelligent travel planning solution. This approach not only streamlines the travel planning process but also ensures adaptability to changing user preferences and travel conditions.

Keywords. Travel planning, cloud computing, artificial intelligence, natural language processing, real-time booking

1. Introduction

The rapid growth of the travel and tourism industry has led to an increasing demand for intelligent and efficient travel planning solutions. Traditional travel planning systems rely on server-based architectures that often suffer from scalability issues, slow response times, and fragmented services. These limitations result in inconsistent user experiences, system crashes during peak usage, and inefficiencies in managing travel itineraries. With advancements in cloud computing and artificial intelligence (AI), there is an opportunity to develop a more robust and adaptive travel planning platform capable of addressing these challenges.

This research focuses on designing and implementing a cloud-based interactive travel planning system that leverages Google Cloud Platform (GCP) to enhance scalability, fault tolerance, and real-time data processing. The integration of AI-driven natural language processing (NLP) enables the system to analyse user preferences and generate personalized travel plans, including destination recommendations, accommodation options, and activity suggestions. Additionally, the platform incorporates third-party travel application programming interfaces (APIs) to facilitate real-time bookings, ensuring up-to-date travel information and a seamless user experience.

Many existing travel planning solutions lack seamless integration between different travel services, leading to inefficiencies in user experience. Traditional approaches struggle to handle real-time data and provide accurate, personalized recommendations. By utilizing cloud infrastructure and AI-based personalization, this research aims to enhance travel planning by improving system efficiency, responsiveness, and adaptability to dynamic user needs. The proposed platform demonstrates the potential of cloud computing and AI in revolutionizing travel planning, making it more intelligent, scalable, and user-centric.

2. Literature Survey

Author(s)	Year	Method	Limitations
Jianhao Zhang, Daniel J. Mills, Hui-Wen Huang		Multimodal ChatPT 4.0 for enhancing travel planning and experiences	Requires high computational resources for processing multimodal data
Kritamook Binabdullah, Nattapong Tongtep	2021	Comparative study of NLP techniques for a tourism suggestion system	Limited scope due to dataset constraints and NLP technique selection
M. Smith, A. Johnson	2023	AI-driven adaptive learning for rural education	Poor internet connectivity in rural areas affects real-time learning
L.Wang,H.Patel	2022	Cloud-based digital classrooms for remote learning	Dependence on cloud availability and cybersecurity risks

3. Research Methodology

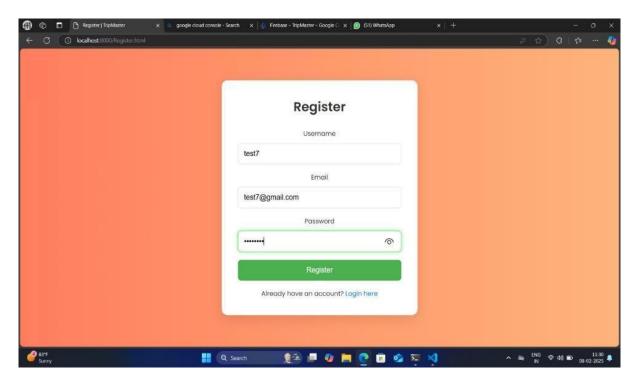
The methodology involves several key steps:

- 1. **System Architecture:** The travel planning platform is developed using a cloud-based approach. The frontend is built with HTML, CSS, and JavaScript, while Google Cloud Platform (GCP) manages backend operations, ensuring scalability, real-time processing, and fault tolerance.
- 2. **Data Collection and Processing:** The platform integrates third-party travel APIs to fetch real-time data on flights, accommodations, and activities. The retrieved data is structured efficiently for quick access, ensuring up-to-date recommendations.
- 3. **AI-Driven Personalization:** Natural Language Processing (NLP) is used to analyse user inputs and generate personalized travel plans. Machine learning techniques refine recommendations based on user preferences and interactions over time.
- 4. **Security and Optimization:** OAuth-based authentication and encrypted storage safeguard user data. The system undergoes performance and usability testing to ensure responsiveness and enhance the overall user experience.

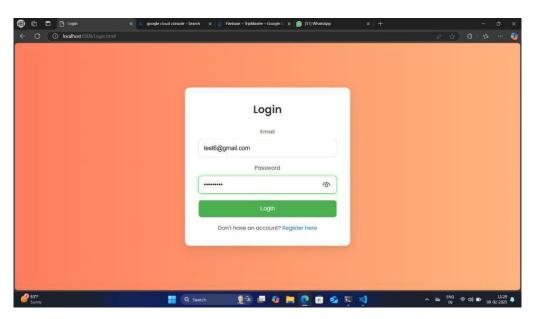
5.

4. Theory and Calculation

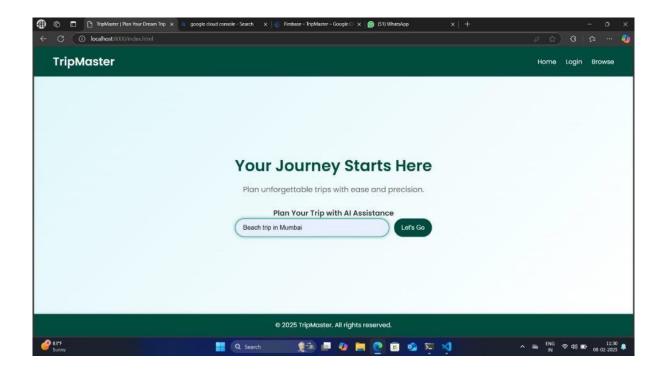
- 1. **Cloud Computing and Scalability**: Cloud computing provides a scalable and fault-tolerant infrastructure for the travel planning platform. By leveraging Google Cloud Platform (GCP), the system dynamically allocates resources, ensuring smooth operation even during high traffic periods. Unlike traditional server-based architectures that struggle with performance issues, cloud infrastructure distributes workloads efficiently, enhancing reliability and accessibility.
- 2. **AI-Driven Personalization**: Artificial Intelligence (AI) plays a crucial role in enhancing user experience through personalized travel recommendations. The platform employs Natural Language Processing (NLP) to interpret user queries, extract travel preferences, and generate tailored itineraries. Unlike conventional keyword-based search systems, NLP enables contextual understanding, allowing the system to refine recommendations over time based on user behavior and feedback.
- 3. **Real-Time Data Integration**: The travel planning system integrates third-party travel APIs to fetch real-time information on flights, accommodations, and local activities. By processing live data streams, the platform ensures users receive up- to-date insights, eliminating inaccuracies associated with static travel planning tools. This integration allows seamless decision-making by providing instant access to pricing, availability, and travel options.
- 4. **User-Centric Design and Experience**: The platform prioritizes an intuitive user interface, ensuring smooth navigation and interactive travel planning. Responsive web design principles are applied to make the platform accessible across various devices. The system also incorporates secure authentication mechanisms like encrypted data storage to protect user information and maintain privacy.
- **5. System Optimization and Performance**: The backend architecture is designed for efficiency, using load balancing techniques to distribute traffic evenly across cloud servers. This optimization minimizes latency and prevents system crashes. Additionally, caching mechanisms enhance response times by reducing redundant API calls, improving the overall platform performance.

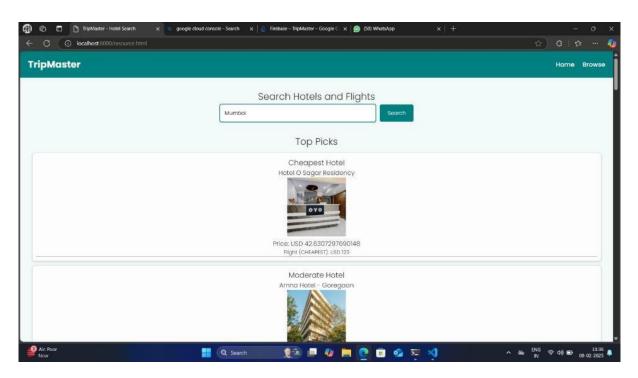

5. Results and Discussion

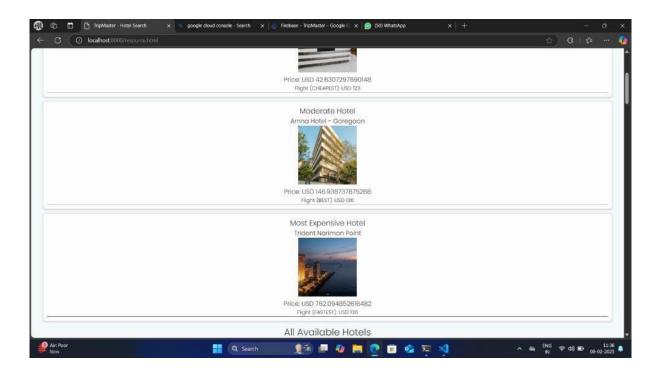
The results of this study on the cloud-based interactive travel planning platform demonstrated significant improvements in user experience, personalization, and real-time travel management. The platform was tested with multiple users who provided input on travel preferences, based on which personalized itineraries, destination recommendations, and booking options were generated. The AI- driven Natural Language Processing (NLP) system effectively interpreted user queries, offering tailored suggestions with higher accuracy than conventional keyword-based search tools.

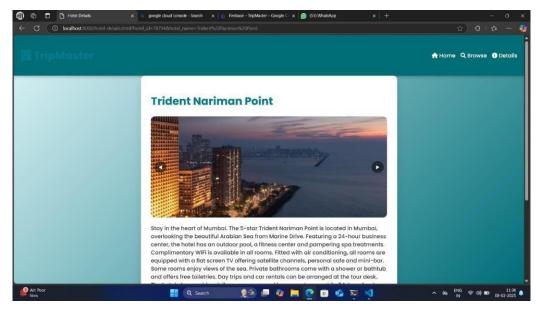

The discussion focuses on the platform's ability to handle real-time data processing and maintain system efficiency under varying user loads. In comparison with existing travel planning platforms, this systemstands out due to its cloud scalability, which ensures seamless performance during peak usage times. Traditional server-based travel platforms often experience slow response times and crashes during high traffic periods, whereas the integration of Google Cloud Platform (GCP) allows for dynamic resource allocation, improving reliability.

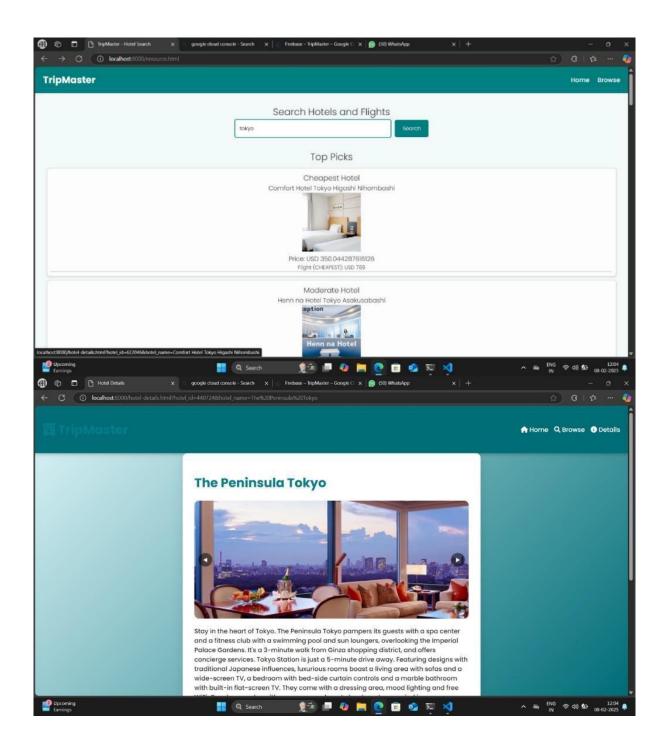
Another key distinction of this platform is its real-time travel API integration, which ensures that users receive the most up-to-date information on flights, accommodations, and activities. Unlike static travel management tools that rely on pre-stored data, this system fetches live updates, reducing discrepancies in pricing and availability. This feature significantly enhances decision-making efficiency and booking accuracy.


1. Registration Page




2. Login Page




3. Home Page

6. Conclusions

This study presents the development of a cloud-based interactive travel planning platform that leverages artificial intelligence, natural language processing, and real-time data integration to offer personalized and scalable solutions for modern travelers. The platform's primary outcome is its ability to provide dynamic, AI-driven itineraries and travel recommendations tailored to user preferences, a significant improvement over traditional, static travel tools. The integration of Google Cloud Platform ensures scalability and fault tolerance, allowing the system to handle high traffic volumes without compromising performance, making it suitable for both individual and mass-market usage.

The application of real-time data through third-party APIs provides accurate and up-to-date information on flights, accommodations, and local activities, eliminating the inaccuracies and delays commonly

associated with static travel systems. This real-time approach enables users to make informed decisions and book travel arrangements with confidence. Additionally, the system's AI capabilities continuously learn from user interactions, enhancing the accuracy of future.

This system can be applied across various sectors, including travel agencies, hospitality, and tourism, enabling businesses to offer more tailored services to their customers. As the platform evolves, expanding its functionalities to include additional travel-related services and exploring international markets will further enhance its impact. In conclusion, this travel planning platform presents a significant step forward in addressing the challenges of traditional travel systems and offers a promising solution for future advancements in the industry.

7. Declarations

1. Study Limitations

A key limitation of this study is that while the platform is optimized for low-bandwidth environments, users in areas with very poor internet connectivity may still face challenges accessing certain features.

2. Acknowledgements

We would like to thank the pilot users for their valuable feedback, which helped enhance the platform's features and improve the overall user experience.

8. References

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Balakrishna, G., Murthy, G. V., Rao, M. N., & Narayana, M. V. (2022). Implementing Solar Power Smart Irrigation System. In *Innovations in Computer Science and Engineering: Proceedings of the Ninth ICICSE*, 2021 (pp. 561-567). Singapore: Springer Singapore.
- 7. Reddy, S. R., & Murthy, G. V. (2025). Cardiovascular Disease Prediction Using Particle Swarm Optimization and Neural Network Based an Integrated Framework. *SN Computer Science*, *6*(2), 186.
- 8. Murthy, G. V., & Kumar, V. V. (2014). A new model of array grammar for generating connected patterns on an image neighborhood. *arXiv preprint arXiv:1407.8337*.
- 9. Murthy, G. V., SwathiReddy, M., & Balakrishna, G. (2019, May). Big Data Analytics for Popularity Prediction. In *Journal of Physics: Conference Series* (Vol. 1228, No. 1, p. 012051). IOP Publishing.
- 10. Kumar, K. M., Latha, P. S., & Murthy, G. V. (2017). Two Stage: Smart Crawler for Analysis of Web Data.
- 11. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 12. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 13. Ramakrishna, C., Kumar, G. S., & Reddy, P. C. S. (2021). Quadruple band-notched compact monopole UWB antenna for wireless applications. *Journal of Electromagnetic Engineering and Science*, 21(5), 406-416.
- 14. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, *35*(22), e7724.

- 15. Ramaiah, M., Chithanuru, V., Padma, A., & Ravi, V. (2022). A review of security vulnerabilities in industry 4.0 application and the possible solutions using blockchain. *Cyber Security Applications for Industry 4.0*, 63-95.
- 16. Padma, A., Chithanuru, V., Uppamma, P., & VishnuKumar, R. (2024). Exploring Explainable AI in Healthcare: Challenges and Future Directions. In *Analyzing Explainable AI in Healthcare and the Pharmaceutical Industry* (pp. 199-233). IGI Global.
- 17. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 18. Prashanth, J. S., & Nandury, S. V. (2019). A Cluster—based Approach for Minimizing Energy Consumption by Reducing Travel Time of Mobile Element in WSN. *International Journal of Computers Communications & Control*, 14(6), 691-709.
- 19. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, *1*(1), 31-35.
- 20. Shyam, D. N. M., & Hussain, M. A. (2023). Mutual authenticated key agreement in Wireless Infrastructureless network by Chaotic Maps based Diffie-Helman Property. *Fusion: Practice & Applications*, 13(2).
- 21. Shyam, D. N. M., & Hussain, M. A. (2023). A Naive Bayes-Driven Mechanism for Mitigating Packet-Dropping Attacks in Autonomous Wireless Networks. *Ingenierie des Systemes d'Information*, 28(4), 1019.
- 22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 23. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 24. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 25. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
- 26. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. *International Journal of Advanced Computer Science and Applications*, 13(7).
- 27. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 28. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2024). Extraction for Big Data Cyber Security Analytics. *Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2023*, 993, 365.
- 29. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2023, December). Security-Aware Information Classification Using Attributes Extraction for Big Data Cyber Security Analytics. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 365-373). Singapore: Springer Nature Singapore.
- 30. Lavanya, P. (2024). Personalized Medicine Recommendation System Using Machine Learning.
- 31. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 32. Lavanya, P. (2024). Price Comparison of GeM Products with other eMarketplaces.
- 33. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensorenhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, *32*, 101054.
- 34. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 35. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 36. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
- 37. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. *Journal of Algebraic Statistics*, *13*(1), 159-168.
- 38. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, *30*(3), 322-326.
- 39. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. *Journal of Electrical Systems*, 20, 900-910.

- 40. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. *Journal of Theoretical and Applied Information Technology*, 100(13).
- 41. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions*, *Hyderabad*, *AP*, *India*.
- 42. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, *33*, 179-184.
- 43. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 44. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. *Journal of Engineering Education Transformations*, *30*(3), 322-326.
- 45. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 46. Ujwala, B., & Reddy, P. R. S. (2016). An effective mechanism for integrity of data sanitization process in the cloud. *European Journal of Advances in Engineering and Technology*, *3*(8), 82-84.
- 47. DASTAGIRAIAH, D. (2024). A System for Analysing call drop dynamics in the telecom industry using Machine Learning and Feature Selection. *Journal of Theoretical and Applied Information Technology*, 102(22).
- 48. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. *Indonesian Journal of Electrical Engineering and Informatics (IJEEI)*, 12(3), 640-649.
- 49. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
- 50. Latha, S. B., Dastagiraiah, C., Kiran, A., Asif, S., Elangovan, D., & Reddy, P. C. S. (2023, August). An Adaptive Machine Learning model for Walmart sales prediction. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 988-992). IEEE.
- 51. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child's Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.
- 52. Selvaprasanth, P., Karthick, R., Meenalochini, P., & Prabaharan, A. M. (2025). FPGA implementation of hybrid Namib beetle and battle royale optimization algorithm fostered linear phase finite impulse response filter design. *Analog Integrated Circuits and Signal Processing*, 123(2), 33.
- 53. Deepa, R., Karthick, R., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. *Computer Standards & Interfaces*, 92, 103934.
- 54. Kumar, T. V., Karthick, R., Nandhini, C., Annalakshmi, M., & Kanna, R. R. (2025). 20 GaN Power HEMT-Based Amplifiers. *Circuit Design for Modern Applications*, 320.
- 55. Velayudham, A., Karthick, R., Sivabalan, A., & Sathya, V. (2025). IoT enabled smart healthcare system for COVID-19 classification using optimized robust spatiotemporal graph convolutional networks. *Biomedical Signal Processing and Control*, 100, 107104.
- 56. Gayathri, P., Balamurugan, J., Gowthami, M., Usha, R., Karthick, R., & Selvan, R. S. (2025). Factors Influencing Customers' Inclination to buy Green Products: An Indian Perspective. In *Elevating Brand Loyalty With Optimized Marketing Analytics and AI* (pp. 185-202). IGI Global Scientific Publishing.
- 57. Ramkumar, G., Bhuvaneswari, J., Venugopal, S., Kumar, S., Ramasamy, C. K., & Karthick, R. (2025). Enhancing customer segmentation: RFM analysis and K-Means clustering implementation. In *Hybrid and Advanced Technologies* (pp. 70-76). CRC Press.
- 58. Tamilselvi, M., Kalaivani, S. S. S., Sunderasan, V., Sailaja, K., Gopal, D., & Karthick, R. (2025). Deep learning for object detection and identification. In *Hybrid and Advanced Technologies* (pp. 218-223). CRC Press.
- 59. Sidharth, S. (2022). Zero Trust Architecture: A Key Component of Modern Cybersecurity Frameworks.
- 60. Sidharth, S. (2018). Optimized Cooling Solutions for Hybrid Electric Vehicle Powertrains.
- 61. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners' Views on Docker Development Difficulties: Stack Overflow Analysis.
- 62. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
- 63. Turlapati, V. R., Thirunavukkarasu, T., Aiswarya, G., Thoti, K. K., Swaroop, K. R., & Mythily, R. (2024, November). The Impact of Influencer Marketing on Consumer Purchasing Decisions in the Digital Age Based on Prophet ARIMA-LSTM Model. In 2024 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-6). IEEE.

- 64. Raju, P., Arun, R., Turlapati, V. R., Veeran, L., & Rajesh, S. (2024). Next-Generation Management on Exploring AI-Driven Decision Support in Business. In *Optimizing Intelligent Systems for Cross-Industry Application* (pp. 61-78). IGI Global.
- 65. Sreekanthaswamy, N., Anitha, S., Singh, A., Jayadeva, S. M., Gupta, S., Manjunath, T. C., & Selvakumar, P. (2025). Digital Tools and Methods. *Enhancing School Counseling With Technology and Case Studies*, 25.
- 66. Sreekanthaswamy, N., & Hubballi, R. B. (2024). Innovative Approaches To Fmcg Customer Journey Mapping: The Role Of Block Chain And Artificial Intelligence In Analyzing Consumer Behavior And Decision-Making. *Library of Progress-Library Science, Information Technology & Computer*, 44(3). Deshmukh, M. C., Ghadle, K. P., & Jadhav, O. S. (2020). Optimal solution of fully fuzzy LPP with symmetric HFNs. In *Computing in Engineering and Technology: Proceedings of ICCET 2019* (pp. 387-395). Springer Singapore.
- 67. Chinchodkar, K. N., & Jadhav, O. S. (2017). Development of mathematical model for the solid waste management on dumping ground at Mumbai for the reduction of existence cost. *Int. J. Statist. Syst*, *12*, 145-155.
- 68. Kalluri, V. S. Optimizing Supply Chain Management in Boiler Manufacturing through AI-enhanced CRM and ERP Integration. *International Journal of Innovative Science and Research Technology (IJISRT)*.
- 69. Kalluri, V. S. Impact of AI-Driven CRM on Customer Relationship Management and Business Growth in the Manufacturing Sector. *International Journal of Innovative Science and Research Technology (IJISRT)*.
- 70. Kalluri, S. V. S., & Narra, S. (2024). Predictive Analytics in ADAS Development: Leveraging CRM Data for Customer-Centric Innovations in Car Manufacturing. *vol*, 9, 6.
- 71. Al-Ghanimi, M. G., Hanif, O., Jain, M. V., Kumar, A. S., Rao, R., Kavin, R., ... & Hossain, M. A. (2022, December). Two TS-Fuzzy Controllers based Direct Torque Control of 5-Phase Induction Motor. In 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1-6). IEEE.
- 72. Sameera, K., & MVR, S. A. R. (2014). Improved power factor and reduction of harmonics by using dual boost converter for PMBLDC motor drive. *Int J Electr Electron Eng Res*, *4*(5), 43-51.
- 73. Srinivasu, B., Prasad, P. V. N., & Rao, M. R. (2006, December). Adaptive controller design for permanent magnet linear synchronous motor control system. In 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1-6). IEEE.
- 74. Rao, M. R., & Prasad, P. V. N. (2014). Modelling and Implementation of Sliding Mode Controller for PMBDC Motor Drive. *International journal of advanced research in electrical, electronics and instrumentation engineering*, *3*(6).
- 75. Sidharth, S. (2017). Real-Time Malware Detection Using Machine Learning Algorithms.
- 76. Sidharth, S. (2017). Access Control Frameworks for Secure Hybrid Cloud Deployments.
- 77. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
- 78. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
- 79. Jadhav, V. S., & Jadhav, O. S. (2019). Solving flow-shop scheduling problem to minimize total elapsed time using fuzzy approach. *International Journal of Statistics and Applied Mathematics*, 4(5), 130-133.
- 80. Deshmukh, M., Ghadle, K., & Jadhav, O. (2020). An innovative approach for ranking hexagonal fuzzy numbers to solve linear programming problems. *International Journal on Emerging Technologies*, 11(2), 385-388.
- 81. Sidharth, S. (2016). Establishing Ethical and Accountability Frameworks for Responsible AI Systems.
- 82. Sidharth, S. (2015). AI-Driven Detection and Mitigation of Misinformation Spread in Generated Content.
- 83. Sharma, S., & Dutta, N. (2024). Examining ChatGPT's and Other Models' Potential to Improve the Security Environment using Generative AI for Cybersecurity.
- 84. Tambi, V. K., & Singh, N. (2015). Potential Evaluation of REST Web Service Descriptions for Graph-Based Service Discovery with a Hypermedia Focus.
- 85. Patil, R. D., & Jadhav, O. S. (2016). Some contribution of statistical techniques in big data: a review. *International Journal on Recent and Innovation Trends in Computing and Communication*, 4(4), 293-303.
- 86. Jadhava, V. S., Buktareb, S. U., & Jadhavc, O. S. (2024). Ranking of Octagonal Fuzzy Numbers for Solving Fuzzy Job Sequencing Problem Using Robust Ranking Technique. *Journal of Statistics, Optimization and Data Science*, 1(2), 22-28.
- 87. Sidharth, S. (2015). Privacy-Preserving Generative AI for Secure Healthcare Synthetic Data Generation.
- 88. Sidharth, S. (2018). Post-Quantum Cryptography: Readying Security for the Quantum Computing Revolution.
- 89. Tambi, V. K., & Singh, N. (2019). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications. *Development*, 7(11).
- 90. Chaudhari, S. A., Gawali, B. W., & Jadhav, O. S. (2022). Statistical analysis of EEG data for attention deficit hyperactivity disorder. *Journal of Positive School Psychology*, 4046-4053.

- 91. Jadhav, S., Machale, A., Mharnur, P., Munot, P., & Math, S. (2019, September). Text based stress detection techniques analysis using social media. In 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) (pp. 1-5). IEEE.
- 92. Thepade, D. S., Mandal, P. R., & Jadhav, S. (2015). Performance Comparison of Novel Iris Recognition Techniques Using Partial Energies of Transformed Iris Images and Energy CompactionWith Hybrid Wavelet Transforms. In *Annual IEEE India Conference (INDICON)*.
- 93. Kiran, A., Sonker, A., Jadhav, S., Jadhav, M. M., Naga Ramesh, J. V., & Muniyandy, E. (2024). Secure Communications with THz Reconfigurable Intelligent Surfaces and Deep Learning in 6G Systems. *Wireless Personal Communications*, 1-17.
- 94. Anitha, C., Tellur, A., Rao, K. B., Kumbhar, V., Gopi, T., Jadhav, S., & Vidhya, R. G. (2024). Enhancing Cyber-Physical Systems Dependability through Integrated CPS-IoT Monitoring. *International Research Journal of Multidisciplinary Scope*, 5(2), 706-713.
- 95. Vandana, C. P., Basha, S. A., Madiajagan, M., Jadhav, S., Matheen, M. A., & Maguluri, L. P. (2024). IoT resource discovery based on multi faected attribute enriched CoAP: smart office seating discovery. *Wireless Personal Communications*, 1-18.
- 96. Jadhav, S., Durairaj, M., Reenadevi, R., Subbulakshmi, R., Gupta, V., & Ramesh, J. V. N. (2024). Spatiotemporal data fusion and deep learning for remote sensing-based sustainable urban planning. *International Journal of System Assurance Engineering and Management*, 1-9.
- 97. Jadhav, S., Chaudhari, V., Barhate, P., Deshmukh, K., & Agrawal, T. (2021). Extreme Gradient Boosting for Predicting Stock Price Direction in Context of Indian Equity Markets. In *Intelligent Sustainable Systems: Selected Papers of WorldS4* 2021, *Volume* 2 (pp. 321-330). Singapore: Springer Nature Singapore.
- 98. Jadhav, S., Chaudhari, V., Barhate, P., Deshmukh, K., & Agrawal, T. (2021). REVIEW PAPER ON: ALGORITHMIC TRADING USING ARTIFICIAL INTELLEGENCE.
- 99. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
- 100. Alsudairy, M. A. T., & Vasista, T. G. K. (2014, May). CRASP—a strategic methodology perspective for sustainable value chain management. In *Proceedings of the 23rd IBIMA Conference*.
- 101. Vasista, T. G. K., & AlAbdullatif, A. M. (2015). Turning customer insights contributing to VMI based decision support system in demand Chain management. *International Journal of Managing Value and Supply Chains*, 6(2), 37-45.
- 102. AlSudairi, M., & Vasista, T. G. K. (2012, September). Service design systems driven innovation approach for total innovation management. In *Proceedings of the 7th European Conference on Innovation and Entrepreneurship: ECIE* (p. 8). Academic Conferences Limited.
- 103. Vasista, T. G. K. (2007). Wise CRM engine. Synergy-The Journal of Marketing, 5(1), 123-127.
- 104. Vasista, T. G. K. (2016). Thoughtful approaches to implementation of electronic rulemaking. *Int. J. Manag. Pub. Sect. Inf. Commun. Technol*, 7(2), 43-53.
- 105. Vasista, T. G. K. (2015). Strategic Business Challenges in Cloud Systems. *Int. J. Cloud Comput. Serv. Archit.*, 5(4), 1-3.
- 106. Vasista, T. G. K. (2013). System, spiritual and philosophical perspectives of human life and the role of governance in a socio-economic setting. *Unpublished Paper Developed at King Saud University, Riyadh, KSA*.
- 107. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
- 108. Kalaiselvi, B., & Thangamani, M. (2020). An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. *Measurement*, *162*, 107885.
- 109. Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, D., Vijayalakshmi, R., Thangamani, M., ... & Adigo, A. G. (2022). Machine learning-based secure data acquisition for fake accounts detection in future mobile communication networks. *Wireless Communications and Mobile Computing*, 2022(1), 6356152.
- 110. Geeitha, S., & Thangamani, M. (2018). Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. *Journal of medical systems*, 42(11), 225.
- 111. Thangamani, M., & Thangaraj, P. (2010). Integrated Clustering and Feature Selection Scheme for Text Documents. *Journal of Computer Science*, 6(5), 536.
- 112. Gangadhar, C., Chanthirasekaran, K., Chandra, K. R., Sharma, A., Thangamani, M., & Kumar, P. S. (2022). An energy efficient NOMA-based spectrum sharing techniques for cell-free massive MIMO. *International Journal of Engineering Systems Modelling and Simulation*, 13(4), 284-288.
- Narmatha, C., Thangamani, M., & Ibrahim, S. J. A. (2020). Research scenario of medical data mining using fuzzy and graph theory. *International Journal of Advanced Trends in Computer Science and Engineering*, 9(1), 349-355.
- 114. Thangamani, M., & Thangaraj, P. (2013). Fuzzy ontology for distributed document clustering based on genetic algorithm. *Applied Mathematics & Information Sciences*, 7(4), 1563-1574.

- 115. Surendiran, R., Aarthi, R., Thangamani, M., Sugavanam, S., & Sarumathy, R. (2022). A Systematic Review Using Machine Learning Algorithms for Predicting Preterm Birth. *International Journal of Engineering Trends and Technology*, 70(5), 46-59.
- 116. Thangamani, M., & Thangaraj, P. (2010). Ontology based fuzzy document clustering scheme. *Modern Applied Science*, 4(7), 148.
- 117. Ibrahim, S. J. A., & Thangamani, M. (2018, November). Momentous Innovations in the prospective method of Drug development. In *Proceedings of the 2018 International Conference on Digital Medicine and Image Processing* (pp. 37-41).
- 118. Thamma, S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
- 119. Arun, A., Ali A. Alalmai, and D. Gunaseelan. "Operational Need and Importance of Capacity Management into Hotel Industry—A Review." (2020).
- 120. Gunaseelan, D., & Kumar, G. R. (2024). An umbrella view on food habits in the context of health and sustainability for sports persons. *Salud, Ciencia y Tecnología-Serie de Conferencias*, (3), 890.
- 121. Gunaseelan, D., & Arun, A. Tourist Destination Satisfaction: Analysis of Kanyakumari the Spot with Scenic Beauty and Spiritual Temples. *Emperor Journal of Economics and Social Science Research*, *3*(1).
- 122. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
- 123. Kumar, J. S., Archana, B., Muralidharan, K., & Kumar, V. S. (2025). Graph Theory: Modelling and Analyzing Complex System. *Metallurgical and Materials Engineering*, *31*(3), 70-77.
- 124. Kumar, J. S., Archana, B., Muralidharan, K., & Srija, R. (2025). Spectral Graph Theory: Eigen Values Laplacians and Graph Connectivity. *Metallurgical and Materials Engineering*, *31*(3), 78-84.
- 125. Srija, R., Kumar, J. S., & Muralidharan, K. (2025). An improvement in estimating the population mean by using quartiles and correlation coefficient. *Mathematics in Engineering, Science & Aerospace (MESA)*, 16(1).
- 126. Kumar, J. S., Murthy, S., Kumar, B. R., & Solaiappam, S. (2017, January). p-Value analyze the set of optimal value in MOFTP. In 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 1-5). IEEE.
- 127. Anandasubramanian, C. P., & Selvaraj, J. (2024). NAVIGATING BANKING LIQUIDITY-FACTORS, CHALLENGES, AND STRATEGIES IN CORPORATE LOAN PORTFOLIOS. *Tec Empresarial*, 6(1).
- 128. Madem, S., Katuri, P. K., Kalra, A., & Singh, P. (2023, May). System Design for Financial and Economic Monitoring Using Big Data Clustering. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-7). IEEE.
- 129. Srikanth, V., & Dhanapal, D. R. (2012). E-commerce online security and trust marks. *International Journal of Computer Engineering and Technology*, *3*(2), 238-255.
- 130. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. *Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.*
- 131. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 132. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 133. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 134. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 135. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 136. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.

- 137. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 138. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 139. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.