Prediction of Alzheimer's Disease Using Deep Learning

¹ Dr V Rama Krishna, ² P.Pooja Iswarya, ³ P.VenkataAkhil, ⁴P.Sashi Kumar

^{1,2,3,4}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. Alzheimer's Disease (AD) is a debilitating neurodegenerative disorder marked by progressive memory loss and cognitive decline, making early diagnosis essential for effective intervention. Traditional diagnostic methods, often based on clinical evaluation and manual analysis of neuroimaging, can be timeconsuming and subjective. Recently, deep learning has emerged as a powerful approach to enhance the accuracy and efficiency of AD prediction. This study presents a deep convolutional neural network (CNN) model designed to automatically extract features from multi-modal data, including magnetic resonance imaging (MRI), positron emission tomography (PET), and clinical variables, to classify individuals into cognitively normal, mild cognitive impairment (MCI), or Alzheimer's Disease categories. Using large publicly available datasets like the Alzheimer's Disease Neuroimaging Initiative (ADNI), the model is trained with strategies such as data augmentation and transfer learning to improve robustness and generalization. Our deep learning framework outperforms traditional machine learning approaches in terms of accuracy, sensitivity, and specificity. Incorporating clinical data alongside imaging enhances the predictive power further, while interpretability techniques like saliency mapping offer valuable insights into the neuroanatomical regions most implicated in disease progression. These findings demonstrate the potential of deep learning to facilitate early and reliable diagnosis of AD, which is critical for timely therapeutic interventions and improved patient outcomes. Future directions include integrating genetic and longitudinal data to refine predictions and conducting clinical validations to ensure real-world applicability. Overall, this research highlights the promise of automated, AI-driven diagnostic tools to complement clinical expertise and transform Alzheimer's Disease care by enabling earlier detection and personalized treatment strategies.

Keywords: Alzheimer's Disease, Deep Learning, Convolutional Neural Network, Neuroimaging, Magnetic Resonance Imaging (MRI), Early Diagnosis, Mild Cognitive Impairment (MCI)

INTRODUCTION

Alzheimer's Disease (AD) is a chronic neurodegenerative disorder that primarily affects older adults and is characterized by a gradual decline in cognitive functions, including memory, reasoning, and language skills. As the most common cause of dementia worldwide, AD poses a significant burden on patients, families, healthcare systems, and society. According to the World Health Organization, more than 55 million people live with dementia globally, with Alzheimer's accounting for 60-70% of cases. The prevalence of AD is expected to rise sharply due to increased life expectancy and aging populations, making early diagnosis and intervention imperative to delay disease progression and improve quality of life.

Currently, the diagnosis of Alzheimer's Disease relies on clinical assessments, neuropsychological testing, and neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET). These methods aim to detect structural and functional brain changes characteristic of AD, including hippocampal atrophy, cortical thinning, and amyloid-beta plaque accumulation. However, traditional diagnostic processes are often time-consuming, costly, and dependent on the expertise of clinicians, which can introduce subjectivity and variability in interpretation. Furthermore, many cases are diagnosed at advanced stages when therapeutic options are limited and less effective.

In recent years, artificial intelligence (AI), particularly deep learning (DL), has emerged as a promising approach to automate and enhance the accuracy of medical diagnosis, including Alzheimer's Disease. Deep learning models, such as convolutional neural networks (CNNs), are capable of learning complex patterns from large amounts of data without the need for manual feature extraction. These models have demonstrated remarkable success in various medical imaging tasks by automatically identifying subtle disease markers that may be overlooked by human observers.

The use of deep learning in AD prediction typically involves training models on neuroimaging data, such as MRI and PET scans, to differentiate between cognitively normal individuals, patients with mild cognitive impairment (MCI), and those with Alzheimer's Disease. MCI is an intermediate stage where cognitive decline is noticeable but not severe enough to interfere significantly with daily life, and it is often considered a precursor to AD. Early identification of MCI patients at high risk of progressing to AD is crucial for timely intervention.

Many studies have leveraged large, publicly available datasets like the Alzheimer's Disease

Neuroimaging Initiative (ADNI), which provides multi-modal imaging and clinical data collected longitudinally from subjects. Deep learning approaches have been applied to these datasets to develop predictive models with increasing accuracy. Techniques such as transfer learning, data augmentation, and multi-modal fusion (combining imaging data with clinical and genetic information) have further improved model performance.

Despite promising advances, challenges remain in deploying deep learning models for clinical use. These include the need for large, diverse datasets to ensure generalizability across populations; the risk of overfitting to training data; interpretability of model decisions; and integration into existing healthcare workflows. Interpretable AI methods, such as saliency maps and attention mechanisms, help address the "black-box" nature of deep learning by highlighting brain regions contributing most to predictions, which also offers potential insights into disease mechanisms.

The objective of this research is to develop a robust deep learning framework capable of accurately predicting Alzheimer's Disease at early stages by analyzing neuroimaging and clinical data. By leveraging CNN architectures and incorporating strategies to mitigate overfitting and enhance interpretability, the model aims to support clinicians in early diagnosis, ultimately contributing to improved patient outcomes and personalized treatment strategies.

The remainder of this paper is organized as follows: Section 2 reviews related work on machine learning and deep learning in AD diagnosis; Section 3 describes the datasets and preprocessing methods; Section 4 details the proposed model architecture and training procedures; Section 5 presents experimental results and performance evaluation; Section 6 discusses implications, limitations, and future directions; and Section 7 concludes the study.

LITERATURE SURVEY

The application of deep learning techniques to Alzheimer's Disease diagnosis has been extensively studied over recent years, with many works focusing on neuroimaging data to improve early prediction accuracy. This section reviews prominent contributions in the field, highlighting different deep learning architectures, multimodal data usage, and performance improvements.

Liu et al. (2018) proposed a multimodal neuroimaging feature learning approach for multiclass diagnosis of AD using MRI, PET, and cerebrospinal fluid (CSF) data. Their framework employed deep learning to integrate heterogeneous data, allowing for comprehensive feature extraction across modalities. The study demonstrated that combining MRI and PET features enhanced classification accuracy compared to single-modality models. The work emphasized the importance of multimodal fusion in capturing complementary pathological information relevant to AD progression, and set a precedent for future multimodal research.

Suk et al. (2014) developed a hierarchical deep learning model combining stacked autoencoders with multimodal data fusion for classifying AD and MCI subjects. Their architecture extracted high-level features from MRI and PET scans, learning nonlinear representations that improved discrimination between diagnostic groups. Notably, the study introduced a novel way to merge features at multiple levels of abstraction, addressing the challenge of heterogeneous data formats. This early work demonstrated the potential of deep learning to surpass traditional machine learning methods relying on handcrafted features.

Payan and Montana (2015) focused specifically on 3D convolutional neural networks (CNNs) for MRI-based AD prediction. Their study is one of the first to apply 3D CNNs to neuroimaging, exploiting volumetric spatial context rather than slice-based 2D approaches. The model automatically learned spatial hierarchies from raw MRI scans, achieving promising classification results. This paper showcased the advantage of 3D CNN architectures in capturing the complex spatial patterns of brain degeneration.

Li et al. (2015) proposed a robust deep learning method using stacked sparse autoencoders for AD/MCI classification. Their approach addressed overfitting issues common in medical imaging by enforcing sparsity constraints and employing layer-wise pretraining. The study highlighted the value of unsupervised feature learning in extracting discriminative representations, particularly when labeled data is limited. Furthermore, the model was evaluated on multiple datasets, confirming its generalizability.

Hosseini-Asl et al. (2016) introduced a 3D deeply supervised adaptable convolutional network that leveraged deep supervision to improve gradient flow and model convergence. Their network was tailored for MRI-based AD diagnosis and incorporated domain adaptation techniques to adjust the model for variability in imaging protocols. This work highlighted the importance of model architecture design and adaptation strategies in improving deep learning performance on heterogeneous clinical data.

Korolev et al. (2017) compared residual and plain 3D CNN architectures for classifying brain MRI scans. Their study demonstrated that residual networks, which use skip connections to mitigate vanishing gradient problems, outperform traditional CNNs in terms of accuracy and training stability. The paper also underscored the value of deeper networks in capturing complex neurodegenerative patterns, influencing subsequent model designs in the field.

Ding et al. (2019) extended deep learning applications to PET imaging, proposing a model for predicting

AD diagnosis using 18F-FDG PET scans. The model exploited metabolic activity patterns in the brain, which are critical biomarkers of AD. Their approach achieved state-of-the-art performance and emphasized the complementary role of functional imaging alongside structural MRI in early detection.

Basaia et al. (2019) developed a deep neural network that achieved automated classification of AD and MCI using only a single MRI scan. Their streamlined approach prioritized clinical feasibility by minimizing data requirements while maintaining high diagnostic accuracy. The study reinforced the practicality of deep learning tools for integration into routine clinical workflows.

Lu et al. (2018) proposed a multimodal and multiscale deep learning framework combining structural MRI and FDG-PET images. Their model extracted features at multiple spatial scales to better characterize disease heterogeneity and progression. The study reported improvements in early diagnosis accuracy, supporting the notion that multiscale analysis captures both global and local brain alterations.

Islam and Zhang (2018) introduced an ensemble system of deep CNNs for brain MRI analysis in AD diagnosis. By combining multiple CNN models trained on different image patches and resolutions, the ensemble approach improved robustness and generalization. This study demonstrated how ensemble learning can mitigate the limitations of individual models and enhance overall prediction performance.

Together, these studies illustrate a progression in deep learning methodologies for Alzheimer's Disease prediction, starting from shallow networks and handcrafted features to sophisticated multimodal, multiscale, and ensemble architectures. Common themes include the use of neuroimaging data (MRI and PET), the integration of clinical information, and the development of strategies to address challenges such as small datasets, variability in imaging protocols, and model interpretability. Recent advances in 3D CNNs and domain adaptation have further pushed the frontier, enabling more accurate and clinically applicable diagnostic tools.

Despite these advances, challenges remain in standardizing datasets, ensuring model robustness across diverse populations, and translating these models from research to clinical practice. Interpretability remains a key focus to ensure trust and acceptance by healthcare professionals. Future research is expected to incorporate longitudinal data, genetic markers, and other biomarkers to develop holistic predictive models.

PROPOSED SYSTEM

This study proposes a comprehensive deep learning framework for early prediction of Alzheimer's Disease (AD) leveraging multimodal neuroimaging data combined with clinical information. The methodology focuses on developing a robust, interpretable convolutional neural network (CNN)-based architecture that can accurately classify subjects into cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's Disease categories. The overall workflow includes data acquisition, preprocessing, model architecture design, training strategy, multimodal data fusion, evaluation metrics, and interpretability analysis.

1. Data Acquisition and Description

The primary source of data is the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, which provides a large-scale, publicly available repository of MRI, PET, and clinical data collected longitudinally from participants at various stages of cognitive health. The dataset includes structural T1-weighted MRI scans, fluorodeoxyglucose (FDG) PET images, and comprehensive clinical assessments such as demographics, neuropsychological scores, and genetic information.

Subjects are categorized into three groups: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's Disease (AD). This multi-class setting reflects the clinical progression of the disease and enables early detection of individuals at risk.

2. Data Preprocessing

Raw neuroimaging data undergoes rigorous preprocessing to ensure quality, consistency, and compatibility with the deep learning pipeline. Preprocessing steps include:

- **Skull stripping:** Removal of non-brain tissues from MRI scans using tools like BET (Brain Extraction Tool).
- **Spatial normalization:** Registration of images to a common anatomical space (e.g., MNI152 template) to align subjects and reduce variability.
- **Intensity normalization:** Standardization of voxel intensities across scans to mitigate scanner-specific effects.
- **Resampling:** Resizing images to a uniform dimension (e.g., 128×128×128 voxels) for compatibility with 3D CNN input requirements.
- **Augmentation:** Generation of additional training samples via transformations such as rotation, translation, and flipping to increase model robustness and prevent overfitting.

Clinical and demographic data are cleaned, normalized, and encoded numerically to be integrated alongside imaging features.

3. Model Architecture

The core of the methodology is a 3D Convolutional Neural Network designed to capture spatial patterns of neurodegeneration. The network consists of multiple convolutional layers interleaved with batch normalization, nonlinear activation (ReLU), and max-pooling layers to progressively extract hierarchical features while reducing spatial dimensions.

Key elements of the architecture include:

- **Input layer:** Accepts volumetric MRI or PET data with dimensions (128×128×128×1).
- **Convolutional blocks:** Each block includes two convolutional layers (kernel size 3×3×3), batch normalization, ReLU activations, and a max-pooling layer for downsampling.
- **Feature extraction:** The final convolutional block is followed by global average pooling to reduce dimensionality.
- Fully connected layers: Two dense layers with dropout regularization to prevent overfitting.
- **Output layer:** A softmax layer with three neurons corresponding to CN, MCI, and AD classes. This architecture enables learning of complex 3D spatial features essential for accurate classification.

4. Multimodal Data Fusion

To exploit complementary information from MRI, PET, and clinical data, a multimodal fusion strategy is implemented. Separate CNN branches are constructed for MRI and PET inputs, each extracting modality-specific features. Clinical data is processed through a fully connected network branch.

The outputs of these branches are concatenated into a unified feature vector, which is fed into a shared classifier consisting of dense layers and softmax activation. This late fusion approach allows the model to learn modality-specific representations while leveraging their combined predictive power.

5. Training Strategy

The model is trained end-to-end using supervised learning with categorical cross-entropy loss. Key aspects of the training process include:

- **Data split:** The dataset is divided into training (70%), validation (15%), and test (15%) sets ensuring balanced class distribution.
- **Optimization:** Adam optimizer with an initial learning rate of 0.001 is employed, using learning rate decay on plateau to fine-tune training.
- Batch size: Mini-batches of 16 samples are used to balance memory constraints and convergence speed.
- **Regularization:** Dropout layers (rate 0.5) and L2 weight decay are applied to mitigate overfitting.
- **Early stopping:** Training is halted if validation loss does not improve for 10 consecutive epochs, preventing overfitting.

RESULTS AND DISCUSSION

Alzheimer's Disease (AD) prediction, followed by a comprehensive discussion of the findings in the context of existing literature. The performance evaluation focuses on classification accuracy, sensitivity, specificity, and area under the ROC curve (AUC), measured on an independent test set drawn from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The discussion also addresses the implications of these results for clinical application, model interpretability, and future improvements.

1. Quantitative Results

The proposed 3D convolutional neural network (CNN) with multimodal fusion was evaluated on a held-out test set containing 15% of the total data, stratified across three diagnostic categories: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer's Disease (AD). Table 1 summarizes the classification metrics achieved by the model.

				F		
SS	Cla	Accu racy (%)	Prec ision (%)	R ecall (%)	1- Score (%)	UC A
CI	CN	92.3	90.5	.7 93	9 2.1	.95
	M	85.7	83.2	.4	8 4.7	.89
	AD	94.1	95.3	.2 93	9 4.2	.96
erall	Ov	90.7	_	_	_	.93

The model achieved an overall accuracy of 90.7%, demonstrating robust discrimination among the three

classes. The highest performance was observed in the AD group, with an accuracy of 94.1% and an AUC of 0.96, indicating excellent sensitivity to the pronounced neurodegenerative patterns typical of advanced disease. The cognitively normal group also yielded strong results, reflecting the model's ability to identify healthy brain anatomy accurately.

The MCI class posed the greatest challenge, with slightly lower accuracy and recall values. This is consistent with clinical and research observations that MCI represents a heterogeneous intermediate state with subtle and variable brain changes. Nonetheless, an 85.7% accuracy and 0.89 AUC highlight the model's promise in detecting early-stage cognitive decline, which is crucial for timely intervention.

Comparative experiments were conducted to assess the contribution of multimodal fusion versus single modality inputs. The MRI-only model achieved an overall accuracy of 85.4%, while the PET-only model reached 87.1%. The fusion of MRI, PET, and clinical data improved accuracy by approximately 5 percentage points, confirming the synergistic value of combining structural, functional, and clinical information for comprehensive AD assessment.

2. Qualitative Analysis and Interpretability

To validate that the model's decisions were grounded in known AD pathology, saliency maps and layerwise relevance propagation (LRP) were applied to test samples. These visualization techniques consistently highlighted brain regions known to be affected in AD, such as the hippocampus, entorhinal cortex, and temporal lobes. Figure 2 illustrates representative saliency maps overlaid on MRI scans of AD and MCI patients, showing concentrated activation in these critical areas.

The interpretability analysis not only builds trust in the model's clinical utility but also aligns with neuropathological evidence, reinforcing the biological plausibility of the learned features. Additionally, SHAP value analysis of clinical variables indicated that age, APOE genotype, and cognitive test scores significantly influenced the model's predictions, consistent with established AD risk factors.

3. Comparison with Existing Literature

The achieved accuracy and AUC values compare favorably with prior state-of-the-art methods. For example, Suk et al. (2014) reported accuracy around 85% for multimodal deep learning approaches, while Payan and Montana (2015) attained approximately 88% accuracy using 3D CNNs on MRI alone. The improvement in our model's performance is attributed to enhanced architectural design, effective multimodal fusion, and rigorous preprocessing including data augmentation.

Moreover, our model's strong performance in MCI classification addresses a common limitation in many prior studies, which often focus primarily on binary AD vs. CN classification. This capability is critical since MCI represents a clinically actionable stage where therapeutic interventions may delay or prevent progression to dementia.

4. Clinical Implications

The results demonstrate the feasibility of using deep learning-based automated systems for early and accurate AD diagnosis. A robust tool with high sensitivity to early pathological changes has the potential to aid clinicians in identifying at-risk patients and tailoring treatment strategies accordingly. The integration of multimodal data reflects real-world clinical practice where diagnosis often involves a combination of imaging and clinical assessments.

Furthermore, the interpretability mechanisms provide clinicians with visual and quantitative explanations, helping to overcome skepticism related to "black-box" AI models. Transparent decision-making facilitates adoption and supports collaborative human-AI diagnosis workflows.

CONCLUSION

In conclusion, this study presents a novel and effective deep learning framework for the early prediction and classification of Alzheimer's Disease by leveraging multimodal neuroimaging data, including structural MRI and functional PET scans, alongside relevant clinical information. The proposed 3D convolutional neural network architecture, designed to capture intricate spatial features from volumetric brain images, demonstrates superior performance compared to single-modality models, underscoring the value of integrating heterogeneous data sources to better characterize the multifaceted pathology of AD. The model achieves high accuracy, sensitivity, and specificity across cognitively normal, mild cognitive impairment, and Alzheimer's Disease groups, with particularly notable improvements in identifying the challenging MCI stage, which is critical for early intervention and disease management. Rigorous preprocessing, data augmentation, and carefully optimized training strategies contributed to the model's generalizability and robustness despite the inherent limitations of relatively modest dataset sizes. Moreover, the incorporation of interpretability techniques such as saliency mapping and SHAP value

analysis adds a valuable dimension of transparency by highlighting brain regions and clinical variables that influence predictions, aligning well with known AD biomarkers and thus fostering clinical trust in the model's decision-making process. While these promising results position the framework as a potential tool to assist clinicians in timely and accurate diagnosis, certain challenges remain to be addressed, including the need for larger and more diverse datasets, adaptation to variable clinical imaging protocols, and the integration of longitudinal data to track disease progression over time. Future extensions of this work will explore these avenues, as well as the inclusion of additional biomarkers like tau imaging and genetic factors, to further enhance predictive accuracy and personalized risk assessment. Importantly, developing lightweight, deployable versions of the model and conducting prospective clinical validations will be crucial steps toward real-world implementation, ensuring that such AI-driven solutions can be seamlessly incorporated into healthcare workflows to improve patient outcomes. Overall, this study contributes significantly to the growing body of research demonstrating the transformative potential of deep learning in neurodegenerative disease diagnosis, offering a scalable, interpretable, and multimodal approach that moves the field closer to earlier, more reliable detection of Alzheimer's Disease and ultimately better clinical care.

REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, 3(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, 1(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 12. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, *32*, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. Handbook of

- Artificial Intelligence, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions*, *Hyderabad*, *AP*, *India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 24. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- 29. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.
- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, *12*, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics

- and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine—A case study. *Journal of Sustainable Mining*, *18*(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- 56. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- 58. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE 2014* (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a

- hybrid generalized adversarial network. Journal of Sensors, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv preprint arXiv:2105.07855*.
- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC* 2021 (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev*, *I*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. IJESAT, 170-174.
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 74. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
 - 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.