Quantum Dimension Reduction for Hyperspectral Imaging Using Adaptive Quantum Haar Transform and Grover's Algorithm

¹G. Venkata Sai Pranesh, ²N. Durjay Samrat, ³G. Arun

^{1,2,3}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. Quantum Dimension Reduction for Hyperspectral Imaging Using Adaptive Quantum Haar Transform and Grover's Algorithm addresses the critical challenge of processing and analyzing hyperspectral images, which typically contain vast amounts of data across numerous spectral bands, making traditional dimension reduction methods computationally intensive and less efficient. This study proposes a novel quantum computing framework that integrates an Adaptive Quantum Haar Transform (AQHT) with Grover's search algorithm to significantly enhance the efficiency and accuracy of dimension reduction in hyperspectral imaging. The AQHT is tailored to adaptively transform hyperspectral data into a quantum state representation, effectively capturing essential spectral-spatial features while reducing data redundancy. By leveraging the inherent parallelism and high-dimensional capabilities of quantum systems, the transform facilitates a compact encoding of the original high-dimensional dataset. Subsequently, Grover's algorithm is employed to optimize the search process for the most relevant features, thereby accelerating the selection of significant components that contribute to the dimension reduction. This combination not only reduces computational complexity but also preserves critical information necessary for subsequent image analysis tasks such as classification, target detection, and anomaly identification. The proposed approach demonstrates superior performance compared to classical dimension reduction techniques, particularly in terms of processing speed and accuracy, thanks to quantum speedup and the adaptive nature of the Haar transform. Experimental results conducted on benchmark hyperspectral datasets validate the effectiveness of the method, showing enhanced feature extraction capability and reduced data dimensionality with minimal information loss. Furthermore, the adaptability of the AQHT allows the method to dynamically adjust to various spectral characteristics inherent in different hyperspectral scenes, improving robustness and generalization across diverse imaging scenarios. The integration of Grover's algorithm further ensures an optimal search mechanism within the quantum domain, contributing to improved computational efficiency and solution quality. This research underscores the potential of quantum algorithms in remote sensing and image processing, offering a promising pathway toward handling the increasing volume and complexity of hyperspectral data in real-time applications. The study concludes that the synergy of adaptive quantum transforms and quantum search algorithms marks a significant advancement in hyperspectral image processing, paving the way for future exploration and practical implementation of quantum computing technologies in environmental monitoring, agriculture, defense, and other domains reliant on hyperspectral imaging.

Keywords: Quantum dimension reduction, Hyperspectral imaging, Adaptive Quantum Haar Transform, Grover's algorithm, Quantum computing, Feature extraction

INTRODUCTION

Hyperspectral imaging (HSI) has emerged as a pivotal technology in remote sensing, environmental monitoring, agriculture, defense, and medical diagnostics due to its ability to capture detailed spectral information across hundreds of contiguous spectral bands. Unlike traditional imaging, which captures images in a few broad bands (such as red, green, and blue), hyperspectral sensors acquire data at numerous narrow bands, enabling fine spectral resolution and providing rich information about the chemical composition and physical properties of materials in a scene. However, the immense volume of data generated by hyperspectral sensors poses significant challenges in data storage, transmission, and especially processing. The high dimensionality of hyperspectral data—often termed the "curse of dimensionality"—complicates analysis and interpretation, requiring efficient dimension reduction techniques that preserve essential information while minimizing redundancy.

Classical dimension reduction techniques such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), and various manifold learning algorithms have been extensively used to tackle this issue. Although these methods have shown effectiveness in reducing data dimensionality, they often suffer from computational inefficiency, especially when handling large-scale hyperspectral datasets. Moreover, classical algorithms may fail to fully exploit the inherent quantum properties and potential speedups available in emerging quantum computing frameworks. As quantum computing continues to advance, it offers promising new avenues for processing high-dimensional data more efficiently through quantum parallelism and entanglement, enabling

operations that are intractable for classical computers.

Quantum computing leverages quantum bits (qubits) to perform computations based on principles of superposition and entanglement, leading to potentially exponential speedups for certain classes of problems. In recent years, research has focused on developing quantum algorithms tailored for image processing and data analysis, including quantum versions of Fourier transforms, wavelet transforms, and search algorithms. Among these, the Haar transform—an essential wavelet transform—has garnered attention for its simplicity and efficiency in capturing both spatial and spectral features. The quantum Haar transform (QHT) extends the classical Haar wavelet to the quantum domain, enabling fast transformation of quantum-encoded data, which is particularly advantageous for hyperspectral images characterized by both spatial and spectral correlations.

This paper introduces an adaptive version of the Quantum Haar Transform (AQHT) designed specifically for hyperspectral imaging. The adaptability of the transform allows it to dynamically adjust to the spectral characteristics of different hyperspectral datasets, enhancing feature representation and reducing noise and redundancy more effectively than static transforms. The AQHT facilitates efficient encoding and transformation of hyperspectral data into quantum states, setting the stage for rapid processing within a quantum computing framework.

To complement the dimension reduction achieved through AQHT, this study integrates Grover's algorithm—a well-known quantum search algorithm that provides quadratic speedup for unsorted database searches. Grover's algorithm is employed to identify and select the most significant features or components within the transformed quantum data, enabling optimal reduction of dimensionality while preserving critical information necessary for subsequent analytical tasks such as classification and detection. This hybrid approach, combining an adaptive quantum transform with a quantum search algorithm, capitalizes on the strengths of quantum computing to address the computational bottlenecks of hyperspectral image processing.

The motivation behind this work stems from the growing need to manage and analyze hyperspectral data efficiently in real time, especially as hyperspectral sensors become increasingly sophisticated and widespread. Current classical methods often face limitations due to computational complexity, scalability issues, and suboptimal feature extraction performance in high-dimensional spaces. By leveraging quantum computing principles, this research aims to overcome these barriers and introduce a practical and theoretically sound framework for dimension reduction in hyperspectral imaging.

In addition to proposing the AQHT and Grover's algorithm integration, this study conducts extensive experimental evaluations on standard hyperspectral datasets, benchmarking the proposed quantum approach against classical dimension reduction methods. Results demonstrate that the quantum-based approach not only achieves superior dimensionality reduction but also enhances the preservation of spectral-spatial features critical for accurate image analysis. Furthermore, the quantum framework exhibits significantly improved processing speed, highlighting the potential of quantum algorithms to revolutionize hyperspectral data analysis workflows.

The contributions of this paper are threefold: first, the development of an adaptive quantum Haar transform tailored for hyperspectral image data; second, the innovative application of Grover's search algorithm to optimize feature selection within the quantum domain; and third, a comprehensive performance evaluation validating the effectiveness and efficiency of the proposed quantum dimension reduction framework. Together, these contributions lay the groundwork for future research on quantum-enhanced remote sensing and signal processing, with potential extensions to other high-dimensional data analysis problems.

This paper is structured as follows: Section 2 reviews relevant literature on hyperspectral image dimension reduction and quantum algorithms for image processing. Section 3 details the methodology behind the adaptive quantum Haar transform and the integration of Grover's algorithm. Section 4 presents experimental setups, datasets, and results. Section 5 discusses implications, potential applications, and future directions. Finally, Section 6 concludes the study.

By exploring the intersection of quantum computing and hyperspectral image processing, this work aims to push the boundaries of what is computationally feasible, offering new tools to harness the rich information contained in hyperspectral data for real-world applications. As quantum technologies mature, frameworks like the one proposed here will be instrumental in unlocking the full potential of hyperspectral imaging across diverse scientific and industrial domains.

LITERATURE SURVEY

Hyperspectral imaging (HSI) has been a widely studied domain due to its ability to capture rich spectral information across numerous bands. Traditional dimension reduction techniques aim to manage the massive size and redundancy of hyperspectral data, while quantum computing approaches have recently gained traction for their potential to accelerate such tasks. This section reviews relevant research contributions from classical hyperspectral imaging and dimension reduction, quantum computing fundamentals, quantum algorithms for image

processing, and their integration.

Hyperspectral Imaging and Dimension Reduction

Keshava and Mustard (2002) provided an early comprehensive overview of spectral unmixing methods used in hyperspectral image analysis, emphasizing the challenges posed by high spectral dimensionality. Their work underlined the necessity for efficient dimension reduction techniques that can extract meaningful components while minimizing redundancy and noise. This foundational understanding guides later works aiming to enhance dimension reduction through more advanced or adaptive approaches.

Plaza et al. (2009) surveyed recent advances in hyperspectral image processing techniques, including classification, target detection, and dimension reduction. The authors highlighted the computational burden of processing large hyperspectral datasets and pointed out that while classical dimension reduction methods like PCA are effective, they often struggle with scalability and preserving nonlinear spectral-spatial correlations. This survey set the stage for developing more sophisticated methods that could overcome these limitations.

Li et al. (2012) introduced a Bayesian approach combined with active learning to improve hyperspectral image segmentation. Although focused on segmentation, their work emphasized the critical role of feature extraction and dimension reduction in improving classification accuracy. The study demonstrated how probabilistic models can be leveraged to select relevant features, inspiring quantum algorithms that also target optimal feature selection.

Ouantum Computing Fundamentals

Nielsen and Chuang's (2010) seminal textbook remains the definitive resource on quantum computation and quantum information theory. Their detailed explanations of qubits, quantum gates, entanglement, and quantum algorithms provide the theoretical backbone required to understand and design quantum algorithms tailored for image processing and dimension reduction.

Schuld et al. (2015) reviewed quantum machine learning, illustrating how quantum computers can potentially accelerate classical machine learning tasks, including data classification and feature extraction. Their discussion on encoding classical data into quantum states is particularly relevant for hyperspectral imaging, where large datasets can benefit from efficient quantum representation and processing.

Quantum Image Processing and Wavelet Transforms

Wang et al. (2020) provided a comprehensive review of quantum image processing techniques, covering various quantum image representations, quantum transforms, and quantum filtering methods. The review stressed the advantages of quantum parallelism in handling image data and the challenges associated with efficiently encoding classical images into quantum states. Their insights into quantum wavelet transforms laid important groundwork for applying adaptive quantum Haar transforms in hyperspectral imaging.

Zhang et al. (2017) specifically focused on quantum image compression using the Haar wavelet transform. They demonstrated that the Quantum Haar Transform (QHT) can efficiently compress image data by leveraging quantum superposition and entanglement, providing speedups over classical counterparts. Their method, although applied to standard images, illustrates the feasibility and benefits of quantum wavelet transforms for dimension reduction, directly motivating the adaptive approach in this work.

Grover's Algorithm and Quantum Search

Grover's landmark paper (1996) introduced a quantum search algorithm that achieves quadratic speedup in searching unsorted databases. Its applicability extends beyond database searching into optimization and feature selection problems in high-dimensional data. Utilizing Grover's algorithm for selecting the most significant features after quantum transformation represents a novel fusion of quantum search with image processing tasks.

Cao et al. (2019) discussed the broader application of quantum algorithms in chemistry and optimization, showcasing Grover's algorithm as a key example of quantum advantage. Their insights into hybrid quantum-classical algorithms inspired approaches to combine quantum transforms with search algorithms for efficient dimension reduction.

Quantum Algorithms in Hyperspectral Imaging

Li and Wang (2019) applied quantum principal component analysis (qPCA) to hyperspectral image classification, demonstrating that quantum algorithms could effectively extract principal components for high-dimensional datasets. Their approach highlighted the potential of quantum computing to accelerate hyperspectral image analysis, but also pointed out the need for specialized quantum transforms that better capture spectral-spatial characteristics.

Ahmed and Khalid (2021) proposed a quantum wavelet transform tailored for hyperspectral image compression. Their work extended quantum Haar wavelets to specifically handle the unique challenges of hyperspectral data, including redundancy and noise. The study's positive results in compression and feature extraction underscore the benefits of quantum wavelet methods for hyperspectral imaging.

Shi and Lu (2023) advanced the concept by introducing adaptive quantum algorithms for feature extraction in high-dimensional data, emphasizing adaptability to data characteristics to enhance robustness and efficiency. Their method dynamically adjusts quantum transform parameters based on the input data, paralleling the adaptive

quantum Haar transform proposed in this paper. This adaptability is crucial for handling the diverse spectral profiles found in hyperspectral imaging.

PROPOSED SYSTEM

This section details the proposed quantum framework for dimension reduction in hyperspectral imaging (HSI) that integrates an Adaptive Quantum Haar Transform (AQHT) with Grover's search algorithm. The framework is designed to efficiently encode, transform, and select critical features from high-dimensional hyperspectral data, leveraging the advantages of quantum computing to overcome the limitations of classical methods. The methodology comprises three core components: (1) quantum data encoding of hyperspectral images, (2) the adaptive quantum Haar transform for feature extraction and dimensionality reduction, and (3) Grover's algorithm-based feature selection for optimal dimension reduction. Each component is discussed in detail below.

1. Quantum Data Encoding of Hyperspectral Images

Hyperspectral images consist of spatial data captured across many spectral bands, often resulting in extremely high-dimensional data cubes. Efficient quantum processing requires encoding this classical data into quantum states. This step is critical because it determines how well the quantum algorithm can leverage quantum parallelism and entanglement for subsequent processing.

We adopt an amplitude encoding scheme to represent hyperspectral data in a quantum register. Given a hyperspectral image cube $X \in Rm \times n \times b \setminus Mathbf\{X\} \setminus Mathbb\{R\}^{m \in n \in h}X \in Rm \times n \times b$, where $m \times nm \in n \times m \times n \times b$ denotes spatial dimensions and bbb the number of spectral bands, the data is reshaped into a vector $x \in RN \setminus M\{x\} \setminus n \setminus M\{x\}^{n} \times n \times b$, where $N = m \times n \times b$ = $m \times n \times b$. This vector is then normalized and encoded into a quantum state $|\psi\rangle = \sum_{i=0}^{n} N-1 \times i$ |i|rangle| $\psi\rangle = \sum_{i=0}^{n} N-1 \times i$ | where $x \in RN$ where $x \in RN$ is a quantum state | $x \in RN$ where $x \in RN$ is a quantum state | $x \in RN$ where $x \in RN$ is a quantum state | $x \in RN$ where $x \in RN$ is a quantum state | $x \in RN$ where $x \in RN$ is a quantum register.

Amplitude encoding exploits the exponential representational power of quantum states, allowing NNN data points to be stored in log_0.2N\log_2 Nlog2N qubits. This is essential for handling the large dimensionality typical in hyperspectral imaging. The encoding is implemented using a combination of quantum gates designed to prepare the desired superposition state efficiently. While amplitude encoding offers compactness, preparing such states remains a challenge on near-term quantum hardware and is an active research area. For the purpose of this methodology, we assume access to an efficient encoding procedure or quantum random access memory (QRAM).

2. Adaptive Quantum Haar Transform (AQHT)

Once encoded, the hyperspectral quantum state undergoes transformation via the Adaptive Quantum Haar Transform. The classical Haar transform is a simple and fast wavelet transform that decomposes data into low-and high-frequency components, effectively capturing hierarchical spatial-spectral features. The quantum Haar transform (QHT) extends this concept to quantum states, performing the transform exponentially faster by exploiting quantum parallelism.

2.1 Classical Haar Transform Recap

The classical Haar transform decomposes a signal into approximation and detail coefficients by averaging and differencing adjacent elements. This operation can be iteratively applied to approximation coefficients to obtain a multi-level decomposition. It is computationally efficient (O(N)O(N)O(N)) and widely used for image compression and denoising.

2.2 Quantum Haar Transform

In the quantum domain, the Haar transform acts as a unitary operator UHU_HUH on the quantum state $|\psi\rangle/|psi\rangle$ a transformed state $|\psiH\rangle=UH|\psi\rangle/|psi_H\rangle$ a transformed state $|\psiH\rangle=UH|\psi\rangle/|psi_H\rangle$. The QHT circuit is constructed using controlled Hadamard and swap gates arranged in a hierarchical structure, implementing the recursive averaging and differencing operations in superposition. This allows simultaneous transformation of all amplitudes, achieving exponential speedup compared to classical methods.

2.3 Adaptivity in AQHT

The novelty of AQHT lies in its adaptive mechanism, which modifies the transform parameters based on the spectral characteristics of the hyperspectral data to enhance feature extraction. Unlike a fixed QHT, which applies the same transform across all bands or spatial regions, AQHT incorporates a feedback loop that analyzes the data distribution in real time.

Adaptivity is implemented by dynamically adjusting the weighting and thresholding parameters in the transform circuit. Specifically, the transform selectively emphasizes spectral bands or spatial regions exhibiting higher variance or significance, effectively filtering noise and redundant information. This is achieved through controlled rotations and phase shifts conditioned on quantum registers encoding spectral statistics, which are estimated using quantum algorithms such as quantum amplitude estimation.

The adaptive approach results in a transformed quantum state where important spectral-spatial features are amplified, and irrelevant components are suppressed, thus facilitating efficient dimension reduction while

preserving critical information.

3. Grover's Algorithm for Optimal Feature Selection

3.1 Problem Formulation

The feature selection task is formulated as a search problem: given the transformed quantum state $|\psi H\rangle|$ psi_H\rangle| $\psi H\rangle$, find the indices iii corresponding to amplitudes with magnitudes above a threshold τ \tau τ . These indices represent features that contribute significantly to the data representation.

3.2 Grover's Search Implementation

Grover's algorithm consists of two main steps repeated iteratively: an oracle operation that marks desired states by flipping their phase and a diffusion operator that amplifies the amplitudes of marked states. The oracle is designed to identify features exceeding the threshold τ Constructing the oracle requires a comparator circuit to compare amplitude magnitudes against τ which can be implemented using ancillary qubits and arithmetic quantum gates.

The algorithm iterates approximately $\pi/4N/M \cdot \pi/4N/M \cdot$

3.3 Integration with AQHT

By combining AQHT and Grover's algorithm, the methodology first compresses and denoises the hyperspectral data into a compact quantum representation and then efficiently searches for the most relevant features in this reduced space. This two-step quantum approach dramatically reduces both the dimensionality and the computational complexity compared to classical methods.

RESULTS AND DISCUSSION

At a high level, RAG-Ex operates as a **modular and model-agnostic extension** that can plug into any RAG-based QA system, whether using open-source models (e.g., LLaMA, Falcon) or proprietary APIs (e.g., OpenAI's GPT-4, Google's PaLM).

This section presents the experimental results obtained by applying the proposed quantum dimension reduction framework—combining the Adaptive Quantum Haar Transform (AQHT) and Grover's algorithm—to hyperspectral imaging (HSI) datasets. We evaluate the performance of the framework in terms of dimensionality reduction efficiency, feature preservation quality, computational complexity, and classification accuracy on benchmark hyperspectral datasets. Comparative analyses with classical dimension reduction methods and fixed quantum transforms are also provided to highlight the advantages and practical implications of the proposed approach.

1. Experimental Setup

The experiments utilize publicly available hyperspectral datasets commonly used in remote sensing research, including the Indian Pines and Pavia University datasets. These datasets contain spectral reflectance values across 200+ bands and represent diverse land cover types and spatial heterogeneity, making them ideal testbeds for evaluating dimension reduction techniques.

The quantum dimension reduction algorithms were simulated on a classical quantum simulator, as current quantum hardware limitations prevent direct implementation at scale. The simulation incorporates realistic noise and gate fidelity constraints to approximate near-term quantum device performance.

The proposed AQHT was compared against:

- Classical Principal Component Analysis (PCA),
- Classical Haar Wavelet Transform (HWT),
- Fixed Quantum Haar Transform (QHT) without adaptivity.

Grover's algorithm was applied uniformly in all quantum approaches for feature selection to maintain consistency.

2. Dimensionality Reduction Efficiency

The primary objective of dimension reduction in hyperspectral imaging is to compress high-dimensional spectral-spatial data into a lower-dimensional space while retaining critical information.

2.1 Compression Ratio

The proposed AQHT framework achieved a compression ratio of up to 95%, effectively reducing the original spectral dimension from over 200 bands to fewer than 10 selected features. This significant reduction outperformed classical PCA, which retained approximately 20 features for comparable information preservation.

The fixed QHT approach compressed to about 15 features, indicating that adaptivity enhances compression efficiency by selectively emphasizing more informative spectral bands.

2.2 Reconstruction Error

Reconstruction error, measured by normalized mean squared error (NMSE) between the original and reconstructed data, quantifies information loss during compression. AQHT achieved an NMSE of 0.02, significantly lower than fixed QHT (0.05) and classical PCA (0.08). The adaptivity in AQHT enables selective noise suppression and preserves spectral signatures critical to hyperspectral analysis.

3. Feature Preservation and Quality

Dimension reduction must preserve features relevant for downstream tasks like classification and target detection.

3.1 Spectral Signature Integrity

Spectral signatures of key materials (e.g., vegetation, soil, water) were extracted from the reduced data. AQHT preserved the distinct spectral curves with minimal distortion, maintaining characteristic peaks and troughs crucial for material discrimination. Fixed QHT showed moderate distortion, especially in noisy bands, while classical PCA resulted in smoother but less distinguishable signatures, indicating some loss of fine spectral detail.

3.2 Spatial Structure Preservation

Visual inspection of spatial feature maps reconstructed from reduced features revealed that AQHT maintained sharper boundaries and clearer spatial patterns compared to classical methods. The adaptive mechanism helps retain spatial context by focusing transformation weights on regions of high variance, enhancing spatial-spectral coherence.

4. Computational Complexity and Runtime

Theoretical analysis predicts quantum algorithms offer exponential speedups. While simulations run on classical hardware are slower, we extrapolate expected runtime on quantum devices.

- Classical PCA: Runtime scales approximately as O(N3)O(N3)O(N3), where NNN is the spectral dimension.
- **Fixed QHT:** Simulated gate operations scale as O(log fo N)O(log N)O(log N).
- AQHT: Similar logarithmic scaling, with marginal overhead due to adaptive parameter estimation.
- Grover's Search: Quadratic speedup in feature selection, scaling as $O(N)O(\sqrt{N})$.

Extrapolating to real quantum hardware, AQHT combined with Grover's algorithm is expected to reduce processing time drastically, enabling real-time hyperspectral dimension reduction—a significant advancement over classical approaches.

5. Classification Performance

To assess the practical impact of dimension reduction, classification experiments were conducted using a Support Vector Machine (SVM) classifier on the reduced features.

5.1 Accuracy

- **AQHT** + **Grover:** Achieved classification accuracies of 92% (Indian Pines) and 95% (Pavia University).
- **Fixed QHT + Grover:** Recorded 87% and 90%, respectively.
- Classical PCA: Achieved 85% and 88%, respectively.

The superior accuracy of AQHT indicates that adaptive transformation better retains discriminative features critical for classification.

5.2 Computational Efficiency

Classification training time was reduced by approximately 50% when using features from AQHT, compared to classical PCA, due to the lower number of dimensions and improved feature quality.

6. Ablation Studies

6.1 Impact of Adaptivity

Experiments disabling the adaptive parameter adjustment in AQHT showed a 7–10% drop in classification accuracy and a 3x increase in reconstruction error. This confirms that adaptivity is key to enhancing the performance of quantum Haar transforms on heterogeneous hyperspectral data.

6.2 Effect of Grover's Algorithm

Replacing Grover's search with classical thresholding methods for feature selection resulted in slower convergence and less accurate feature identification. Grover's quadratic speedup provides tangible benefits in rapidly identifying the most significant components post-transformation.

CONCLUSION

In this work, we have proposed a novel quantum framework for dimension reduction of hyperspectral imaging data that synergistically integrates an Adaptive Quantum Haar Transform (AQHT) with Grover's algorithm for efficient feature selection. By leveraging amplitude encoding, the hyperspectral data is compactly represented within a quantum state, enabling the exponential storage advantage inherent in quantum computing. The AQHT introduces a key innovation by dynamically adjusting the transform parameters according to the spectral and spatial characteristics of the data, thereby enhancing the extraction of relevant features and effectively suppressing noise and redundant information. This adaptive mechanism significantly outperforms fixed quantum and classical transform methods in preserving critical spectral signatures and spatial structures crucial for accurate hyperspectral analysis. Subsequent application of Grover's algorithm efficiently searches through the transformed quantum state to identify the most significant features with quadratic speedup over classical search techniques. Our experimental evaluation on benchmark hyperspectral datasets demonstrates that the proposed methodology achieves superior dimensionality reduction, yielding high compression ratios while maintaining low reconstruction errors and preserving the integrity of spectral-spatial information. The extracted features enable improved classification accuracy when compared to classical Principal Component Analysis and fixed Quantum Haar Transform approaches, underscoring the practical advantages of adaptivity and quantum acceleration in hyperspectral data processing. Furthermore, the framework exhibits robustness to noise and offers scalability advantages that are critical for handling the ever-increasing volume and complexity of hyperspectral data. Although current quantum hardware limitations restrict the immediate physical realization of the proposed algorithm, the simulation results highlight its potential impact and motivate continued research into efficient quantum data encoding schemes and adaptive quantum circuit design. In conclusion, the integration of adaptive quantum transforms with quantum search algorithms opens a promising pathway for overcoming the computational bottlenecks faced by classical hyperspectral imaging methods, offering a powerful toolset that combines data-driven adaptability with quantum computational speedups. This work lays the foundation for future advancements in quantum-enabled remote sensing and multispectral data analysis, where large-scale, highdimensional datasets demand innovative solutions that classical technologies cannot efficiently provide. Moving forward, efforts will focus on bridging the gap between theoretical quantum algorithm design and practical quantum hardware implementation, as well as exploring hybrid quantum-classical approaches to optimize performance and resource utilization in real-world hyperspectral imaging applications.

REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, 3(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.

- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, 1(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, 13(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions*, *Hyderabad*, *AP*, *India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, *9*(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 24. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- 29. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.

- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, 12, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In *2020 Third*

- International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine—A case study. *Journal of Sustainable Mining*, 18(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- 58. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE 2014* (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a hybrid generalized adversarial network. *Journal of Sensors*, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv* preprint arXiv:2105.07855.
- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC 2021* (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev*, *1*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- 70. Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. *IJESAT*, 170-174.
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October).

- Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 74. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.