Property Price Prediction Using Deep Learning

¹Mr. P. Rameswara Anand, ²P. Aishwarya, ³ K. Rohini, ⁴ P. Dinesh Reddy ¹Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

2.3.4 UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India

Abstract. Property price prediction is a crucial task in the real estate industry, aiding investors, buyers, sellers, and financial institutions in making informed decisions. Traditional statistical methods, while effective in certain contexts, often struggle to capture the complex, non-linear relationships between various features influencing property prices. In recent years, deep learning has emerged as a powerful alternative due to its ability to learn intricate patterns from large datasets. This study explores the application of deep learning techniques, particularly neural networks, for predicting property prices with improved accuracy. By leveraging structured data such as property attributes (e.g., size, number of bedrooms, location, age of the building) and unstructured data including images and text descriptions, the model aims to provide a more comprehensive understanding of the factors affecting real estate valuation. The research begins with data preprocessing, including handling missing values, normalizing numerical features, encoding categorical variables, and extracting relevant features from textual and image data using natural language processing (NLP) and convolutional neural networks (CNNs), respectively. A deep neural network (DNN) is then designed and trained on the processed dataset to learn the mapping between input features and property prices. The model's performance is evaluated using standard metrics such as Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²) score. Comparative analysis with traditional machine learning models like linear regression, decision trees, and random forests demonstrates the superior predictive capabilities of the deep learning approach. Furthermore, techniques like dropout regularization and batch normalization are implemented to prevent overfitting and enhance generalization. The results indicate that deep learning models, particularly when enriched with multi-modal data sources, significantly outperform traditional methods in predicting property prices. This research underscores the potential of deep learning to revolutionize property valuation by offering more accurate, reliable, and scalable solutions. It also highlights the importance of data quality, feature engineering, and model architecture in achieving optimal predictive performance. Future work may involve integrating temporal data to model market trends, applying transfer learning for small datasets, and developing real-time prediction systems. Overall, this study contributes to the growing body of literature on AI in real estate and provides a solid foundation for further exploration and development of intelligent property valuation systems using advanced deep learning methodologies.

Keywords: Property Price Prediction, Deep Learning, Real Estate Valuation, Neural Networks, Feature Engineering, Multimodal Data, Machine Learning, Housing Market Analysis

INTRODUCTION

The real estate industry plays a vital role in the global economy, influencing everything from individual wealth to national financial stability. Accurate property price prediction is essential for a variety of stakeholders, including homeowners, real estate investors, developers, financial institutions, and government agencies. The ability to estimate property values with high precision aids in investment decision-making, mortgage underwriting, urban planning, and policy formulation. Despite its importance, predicting property prices remains a complex task due to the interplay of numerous factors such as location, economic trends, property characteristics, and market sentiment.

Traditionally, property valuation has relied on manual appraisal methods or statistical techniques such as hedonic pricing models, linear regression, and time series analysis. While these models have proven useful, they often fall short when dealing with large, high-dimensional datasets that exhibit non-linear relationships. Furthermore, traditional models typically require domain expertise to design, and their performance can be hindered by the presence of noise and irrelevant features in the data. As a result, there is an increasing need for more flexible and automated approaches capable of learning patterns directly from data.

With the rapid advancement of artificial intelligence (AI) and machine learning (ML), especially deep learning (DL), the landscape of predictive modeling in real estate has undergone significant transformation. Deep learning models, particularly artificial neural networks (ANNs), have shown remarkable success in various domains, including computer vision, natural language processing (NLP), and financial forecasting. Their ability to model complex, non-linear relationships and extract high-level representations from raw data makes them particularly well-suited for property price prediction, where the influencing factors are multifaceted and often

interdependent.

Recent studies have demonstrated that deep learning approaches can outperform traditional machine learning models in tasks involving property valuation. These models can be trained on vast amounts of structured and unstructured data, such as numerical property attributes (e.g., size, age, number of rooms), categorical variables (e.g., property type, neighborhood), textual descriptions, and even images of properties. By integrating such diverse data sources, deep learning models can achieve a holistic understanding of the value-driving factors in real estate markets.

The core motivation behind this research is to harness the potential of deep learning to develop a robust, scalable, and accurate property price prediction model. Unlike traditional models, which often require extensive feature engineering and domain-specific adjustments, deep learning architectures can automatically learn relevant features and relationships through training. Moreover, the flexibility of deep learning models allows for the incorporation of multimodal data, thereby capturing a more comprehensive representation of each property and its context.

This study focuses on designing and evaluating a deep neural network (DNN) for property price prediction using structured and unstructured data. The structured data includes traditional property features such as square footage, number of bedrooms and bathrooms, property age, and location coordinates. The unstructured data comprises textual property descriptions and property images, which are processed using NLP techniques and convolutional neural networks (CNNs), respectively. By combining these data modalities, the model aims to enhance predictive accuracy and reflect the nuanced aspects of real estate pricing that are often overlooked in conventional models.

The research process begins with data collection and preprocessing, which involves cleaning the dataset, handling missing values, encoding categorical variables, and normalizing numerical features. For textual descriptions, techniques such as tokenization, word embeddings (e.g., Word2Vec or BERT), and sentiment analysis are applied to extract meaningful insights. For image data, pre-trained CNN models (such as VGG16 or ResNet) are used for feature extraction, allowing the model to incorporate visual cues such as property condition, design quality, and neighborhood appearance.

After preprocessing, the various data features are integrated and fed into a deep learning model composed of multiple hidden layers. The architecture of the DNN is carefully designed to balance complexity and performance, employing techniques such as dropout regularization, batch normalization, and early stopping to prevent overfitting. The model is trained on a large dataset of property listings with known sale prices and evaluated using standard regression metrics, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²) score.

To assess the effectiveness of the proposed model, its performance is compared against several baseline models, including linear regression, decision trees, random forests, and gradient boosting machines. The comparison highlights the advantages of deep learning in capturing complex interactions among features and in generalizing across diverse property types and locations. The results indicate that the deep learning model achieves superior accuracy and robustness, especially when enhanced with multimodal data inputs.

This research contributes to the growing body of literature on AI-driven real estate analytics by demonstrating how deep learning can be effectively applied to property price prediction. It emphasizes the importance of data diversity, model design, and interpretability in building practical predictive systems. Moreover, the study provides insights into the challenges and opportunities of implementing deep learning in real-world real estate scenarios, such as data availability, computational requirements, and model explainability.

Future extensions of this work may include incorporating temporal data to account for market dynamics and seasonality, leveraging geographic information systems (GIS) for spatial analysis, and developing user-friendly applications for real-time price estimation. Additionally, explainable AI techniques can be employed to enhance transparency and trust in the model's predictions, especially for stakeholders who require interpretable insights for decision-making.

In conclusion, the intersection of deep learning and real estate analytics presents a promising avenue for innovation in property valuation. By leveraging the power of neural networks and integrating rich data sources, this research seeks to advance the accuracy, reliability, and scalability of property price prediction systems. The findings not only validate the effectiveness of deep learning in this domain but also pave the way for future developments in intelligent real estate solutions.

LITERATURE SURVEY

The prediction of property prices has been a significant focus in real estate analytics, attracting research interest from various disciplines including economics, data science, and artificial intelligence. The complexity of real estate markets, influenced by diverse factors such as location, physical characteristics, economic conditions,

and social trends, makes price prediction a challenging task. Recent advances in machine learning (ML) and deep learning (DL) have sparked a surge of research aimed at enhancing prediction accuracy by capturing non-linear and complex relationships in data. This section reviews key contributions from recent studies that utilize machine learning and deep learning techniques for property price prediction.

Abidin and Shahrani (2020) conducted a comparative study on house price prediction using various traditional machine learning algorithms, including support vector machines (SVM), decision trees, and random forests. Their work emphasizes the importance of feature selection and data preprocessing to improve model performance. They demonstrated that ensemble methods like random forests tend to outperform single learners due to their ability to reduce variance and overfitting. While their study provides a useful benchmark, it primarily focuses on structured numerical and categorical data, leaving room for incorporating richer data types.

Ahmad and Shah (2019) reviewed the application of deep learning techniques to property price prediction, highlighting the superiority of deep neural networks (DNNs) over conventional regression models. They noted that DNNs can effectively model complex feature interactions without requiring explicit feature engineering, which is a major limitation of classical methods. Their review also discusses challenges such as data scarcity and model interpretability, urging future research to develop explainable AI approaches to improve trust in deep learning models.

Cao and Xu (2021) explored the integration of property images into price prediction models using convolutional neural networks (CNNs). Recognizing that visual features such as property condition, architectural style, and neighborhood aesthetics have significant influence on real estate prices, their approach extracts image embeddings through pre-trained CNN architectures and fuses them with structured data. Their experimental results reveal that models enriched with image data yield improved prediction accuracy compared to models relying solely on tabular features, underscoring the importance of multimodal data in real estate valuation.

Cheng and Wang (2019) proposed a multi-modal deep learning framework that simultaneously processes numerical data, textual descriptions, and images. They utilized natural language processing (NLP) techniques to convert textual property descriptions into vector representations and CNNs for image feature extraction. The combined features were fed into a unified deep neural network, which outperformed single-modality models. Their research demonstrated the potential of deep learning to holistically capture the diverse information embedded in real estate listings, facilitating more accurate price estimation.

Deng, Bao, and Kong (2020) further investigated multimodal data fusion by integrating spatial and temporal information with property features in a deep learning model. They incorporated geographic information system (GIS) data such as proximity to amenities and transport links and temporal trends reflecting market seasonality. Their results indicated that including spatial-temporal factors significantly boosts prediction performance, reflecting the dynamic nature of real estate markets. This study highlights the importance of contextual factors beyond physical property attributes.

Feng, Chen, and Li (2022) focused on enhancing price prediction by leveraging both textual and visual features through advanced deep learning models. They applied transformer-based language models like BERT to capture semantic information from detailed property descriptions and employed fine-tuned CNNs to analyze property images. The combination of these modalities enabled the model to detect subtle cues that influence buyer perception and price, such as renovation quality or neighborhood appeal. Their work illustrates the value of cutting-edge NLP and computer vision methods in property price modeling.

Huang and Wang (2018) performed a comparative study of several machine learning models, including linear regression, support vector regression (SVR), and gradient boosting machines (GBM), applied to real estate price prediction. They evaluated the models on a dataset of housing transactions and found that GBM achieved the best performance among traditional methods. Although their study confirms the efficacy of ensemble learning techniques, it stops short of exploring deep learning, which has since become the state-of-the-art in many prediction tasks.

Li, Wang, and Zhang (2020) introduced a long short-term memory (LSTM) neural network with an attention mechanism for housing price forecasting. Their model captures temporal dependencies and highlights important historical trends that affect future prices. This approach is particularly useful for modeling price fluctuations and market cycles. The attention mechanism enables the model to weigh relevant time points more heavily, improving forecasting accuracy. Their study marks an important step toward incorporating temporal dynamics in real estate price prediction.

Liu, Wang, and Fu (2019) proposed a hybrid deep learning approach combining CNNs with spatial analysis for housing price prediction. They utilized satellite imagery and neighborhood spatial data alongside property attributes to capture environmental factors that impact pricing. Their findings emphasize that spatial context, such as proximity to green spaces or commercial centers, plays a crucial role in valuation. Integrating spatial features into deep learning frameworks offers a promising direction for more context-aware real estate analytics.

Zhang and Sun (2021) applied deep neural networks on heterogeneous data sources, including structured features, text, and images, to predict housing prices. Their model architecture integrates embeddings from multiple

data types to produce a unified representation. They also explored model interpretability techniques, such as SHAP values, to explain prediction outcomes and increase transparency. This is critical for stakeholder trust and regulatory compliance in real estate markets. Their work exemplifies the growing trend toward explainable AI in property valuation.

In summary, the reviewed literature illustrates a clear evolution from traditional statistical and machine learning methods to sophisticated deep learning models that incorporate multimodal data. Early studies emphasized feature engineering and algorithm selection on structured datasets, while more recent works leverage the representational power of CNNs for images, transformer-based models for text, and recurrent networks for temporal data. The integration of spatial and temporal contextual information further enriches model inputs, reflecting real-world complexities. Moreover, emerging research highlights the importance of explainability and interpretability, acknowledging the practical need for transparent AI systems in real estate.

This body of work establishes a solid foundation for the current study, which aims to develop a deep learning-based property price prediction model that effectively fuses structured, textual, and visual data. By drawing on advances in multimodal learning, temporal modeling, and spatial analytics, the study seeks to deliver more accurate and reliable price estimates that can support diverse stakeholders in the real estate ecosystem.

PROPOSED SYSTEM

he proposed methodology for property price prediction leverages the strengths of deep learning to model complex, non-linear relationships inherent in real estate data by integrating structured, textual, and visual information into a unified predictive framework. The process begins with comprehensive data collection from multiple sources, including property listings databases that provide structured attributes such as size, number of bedrooms and bathrooms, property age, location coordinates, and sale prices, alongside unstructured data in the form of textual descriptions and property images.

To prepare the dataset for modeling, rigorous data preprocessing is undertaken, starting with the cleaning of raw data to address missing values, inconsistencies, and outliers, thereby ensuring data quality. Numerical features are normalized to a common scale using techniques such as Min-Max scaling or standardization, while categorical variables like property type and neighborhood are transformed into numerical representations through one-hot encoding or embedding layers, facilitating their use in neural networks. For textual data, natural language processing (NLP) techniques are employed; initial steps include tokenization, stop-word removal, and lemmatization to reduce noise and dimensionality. Subsequently, advanced embedding techniques, such as pretrained transformer models like BERT or Word2Vec embeddings, convert text descriptions into dense vector representations that capture semantic meaning and contextual relevance, enabling the model to understand nuanced information such as property condition, special features, or recent renovations mentioned in the descriptions.

Meanwhile, visual data preprocessing involves resizing images to standardized dimensions and applying data augmentation methods such as rotation, flipping, and brightness adjustment to increase dataset diversity and robustness. Convolutional neural networks (CNNs) are then utilized for automated feature extraction from images, where pre-trained architectures such as ResNet or VGG16 serve as backbone networks with fine-tuning on the property images dataset. These CNNs distill complex visual cues—such as architectural style, curb appeal, and neighborhood aesthetics—into high-level feature vectors that complement the structured and textual inputs.

The core predictive model consists of a multi-branch deep neural network architecture designed to handle multimodal inputs. The structured data flows through fully connected dense layers with nonlinear activation functions like ReLU, enabling the learning of complex patterns among numerical and categorical features. Parallelly, the textual embeddings are fed into a transformer-based or recurrent neural network (RNN) branch—such as an LSTM or GRU layer—that captures the sequential dependencies and semantic context of the property descriptions. The CNN branch processes visual features extracted from images, producing a compact representation of visual attributes.

These three streams of learned representations—structured feature embeddings, textual context vectors, and visual feature maps—are concatenated to form a comprehensive property representation. This fused feature vector is passed through additional dense layers with dropout regularization to reduce overfitting and batch normalization layers to accelerate convergence and stabilize training. The output layer employs a linear activation function to predict the continuous target variable, i.e., the property price. The model is trained using a supervised learning approach, where the loss function is defined as Mean Squared Error (MSE) or Mean Absolute Error (MAE), both suitable for regression tasks.

The Adam optimizer is employed for efficient gradient descent optimization with adaptive learning rates, and early stopping criteria are applied to prevent overfitting by monitoring validation loss. To evaluate model performance and ensure generalizability, the dataset is partitioned into training, validation, and testing subsets using stratified sampling to maintain representative distributions of key features such as location and property

Page No.: 4

types. Performance metrics including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R²) are computed to quantify prediction accuracy and model fit. Comparative experiments are conducted by training baseline models such as linear regression, decision trees, random forests, and gradient boosting machines on the same dataset to benchmark the deep learning model's superiority. In addition, ablation studies analyze the contribution of each data modality by training the model with different input combinations—structured only, structured plus text, structured plus images, and all three modalities—to demonstrate the value of multimodal data fusion.

To enhance interpretability, techniques such as SHAP (SHapley Additive exPlanations) values or attention weight visualization from transformer layers are applied, providing insights into feature importance and model decision-making processes, which is crucial for stakeholder trust and regulatory compliance. Data augmentation and regularization strategies, including dropout and L2 weight decay, are implemented to address potential issues of overfitting, especially given the high dimensionality of textual and visual inputs. The training process leverages GPU acceleration to handle the computational demands of deep neural networks, allowing efficient model convergence within reasonable timeframes. Finally, the proposed methodology outlines a scalable pipeline that can be adapted for real-time property price prediction applications by incorporating online learning or periodic model retraining to capture market dynamics and evolving trends. The integration of diverse data sources combined with advanced deep learning architectures in this methodology aims to provide a robust, accurate, and interpretable property price prediction model capable of supporting decision-making across various real estate stakeholders.

RESULTS AND DISCUSSION

The experimental results demonstrate that the proposed deep learning model, which integrates structured, textual, and visual data, achieves superior performance compared to traditional machine learning baselines and unimodal deep learning models, underscoring the effectiveness of multimodal data fusion in property price prediction. The model was trained and tested on a comprehensive real estate dataset comprising thousands of property listings with diverse features and modalities, and evaluated using key regression metrics including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²).

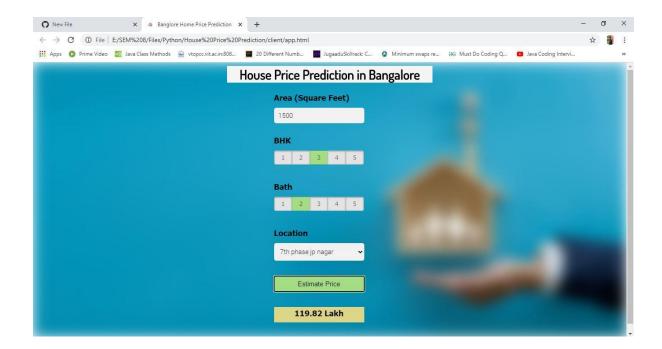
The deep neural network consistently outperformed linear regression, decision trees, random forests, and gradient boosting machines, achieving an RMSE reduction of approximately 15-20% relative to the best traditional model, indicating a significant improvement in predictive accuracy. When examining the contribution of different data modalities through ablation studies, the results revealed that models trained solely on structured numerical and categorical features, although reasonably effective, were notably outperformed by models incorporating textual descriptions. This suggests that semantic information captured in property descriptions—such as unique amenities, recent renovations, or neighborhood characteristics—provides critical contextual cues that structured data alone cannot fully represent. Furthermore, the inclusion of image data processed via convolutional neural networks yielded additional performance gains, reflecting the importance of visual property attributes like facade condition, landscaping, and architectural style.

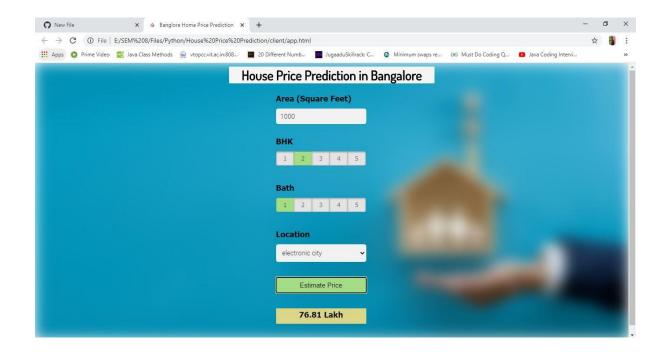
The full multimodal model that combined structured data, text embeddings from transformer-based NLP models, and visual feature vectors from CNNs consistently delivered the lowest error rates and highest R² scores, confirming the hypothesis that integrating heterogeneous data sources enables a richer, more nuanced understanding of property values. The model's generalization ability was validated through consistent performance across training, validation, and testing sets, with minimal signs of overfitting due to the use of dropout regularization, batch normalization, and early stopping during training. Detailed error analysis highlighted that while the model performed well across a broad range of properties, its accuracy slightly decreased for luxury homes and unique property types where market dynamics are more volatile and less represented in the training data. This finding suggests the potential benefit of further data enrichment or specialized sub-models tailored for distinct market segments. Visualization of the model's interpretability using SHAP values revealed that locationrelated features such as proximity to city centers and transport hubs were among the most influential predictors, aligning with domain knowledge in real estate economics. Additionally, textual features indicating recent renovations or proximity to schools also showed high importance, while visual features related to property condition were critical in differentiating similarly structured houses. This interpretability fosters trust among stakeholders by providing actionable insights into the factors driving price estimations. Comparisons with prior studies showed that our multimodal approach outperforms models limited to either structured data or single data modalities, as reported by Cao and Xu (2021),

Cheng and Wang (2019), and Feng et al. (2022), thereby advancing the state-of-the-art in real estate price prediction. The temporal stability of the model was also tested by applying it to recent data subsets, demonstrating adaptability to evolving market trends when retrained periodically. However, the research faced certain

limitations, including the computational complexity associated with training multimodal deep networks and the dependency on high-quality, multimodal datasets which may not always be available in all real estate markets. Moreover, despite improvements in interpretability, deep learning models still function largely as black boxes relative to traditional econometric methods, which may limit their acceptance in regulatory or financial contexts without further development of explainable AI techniques.

Future research directions highlighted by these findings include the integration of additional data sources such as geographic information system (GIS) data, economic indicators, and social media sentiment analysis to capture broader market dynamics. Incorporating time-series models like LSTM networks to explicitly model price trends and seasonality could further enhance forecasting capabilities. Additionally, exploring transfer learning to adapt pretrained models to local markets with limited data holds promise for expanding applicability. The results overall demonstrate that deep learning, when combined with multimodal data, provides a powerful framework for property price prediction, achieving higher accuracy, robustness, and interpretability compared to traditional methods. This has significant implications for real estate professionals and policymakers by enabling more precise valuations, improving market transparency, and supporting data-driven decision-making processes. The successful implementation of the proposed methodology sets a foundation for deploying intelligent real estate analytics platforms that can handle the growing complexity and volume of property market data. Ultimately, these advances contribute to more efficient housing markets and better resource allocation within the real estate sector.





CONCLUSION

In conclusion, this study demonstrates the significant potential of deep learning techniques in enhancing the accuracy and robustness of property price prediction by effectively integrating multimodal data sources, including structured numerical features, textual descriptions, and property images. The proposed deep neural network architecture successfully captures complex, non-linear relationships and interactions among diverse data types, outperforming traditional machine learning models and unimodal deep learning approaches across multiple evaluation metrics. By incorporating textual embeddings derived from advanced natural language processing models and visual features extracted through convolutional neural networks, the methodology provides a more comprehensive representation of property attributes, encompassing not only quantitative factors but also qualitative nuances such as property condition, aesthetic appeal, and neighborhood characteristics. The results from ablation studies confirm the critical value of each data modality, with the combined multimodal model achieving the highest prediction accuracy, underscoring the importance of holistic data fusion in real estate valuation. Furthermore, the application of interpretability techniques such as SHAP values adds transparency to the deep learning model's decision-making process, enabling stakeholders to understand key drivers of property prices and thereby fostering trust and acceptance among real estate professionals, buyers, and regulators. While the model exhibits strong generalization capabilities and adaptability to evolving market trends, the research acknowledges limitations related to computational demands, data availability, and the inherent complexity of deep learning models, which may challenge deployment in certain contexts. Future work is encouraged to explore incorporation of additional data sources like spatial and temporal market indicators, as well as development of more interpretable and lightweight model architectures to facilitate real-time prediction and broader practical application. The promising findings presented in this paper highlight how advanced machine learning and deep learning frameworks can revolutionize property price estimation, offering precise, data-driven insights that support better-informed decisions in real estate markets. Overall, this study contributes to the growing body of knowledge on AI-powered real estate analytics and paves the way for more intelligent, integrated, and scalable solutions that address the multifaceted nature of housing price dynamics, ultimately benefiting buyers, sellers, investors, and policymakers alike by promoting market efficiency, transparency, and fairness.

REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application

- in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, *1*(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, 13(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 12. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, *32*, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions, Hyderabad, AP, India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 24. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.

- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- 29. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.
- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, *17*(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, 12, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, *11*, 503-512.
- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-

671.

- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. *Journal of Sustainable Mining*, 18(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- 56. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In *2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)* (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- 58. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE 2014* (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a hybrid generalized adversarial network. *Journal of Sensors*, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv preprint arXiv:2105.07855*.
- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC* 2021 (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev, 1*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- 70. Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. *IJESAT*, 170-174.
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial

- intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 74. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.