Artificial Intelligence Chatbot for Education

¹ Mr P.Rameswara Anand, ² Ms. Sathvika Reddy, ³ Mr. Vaishnav Sathvai, ⁴ Ms. Abhilasha Thakur

¹Assistant Professor, Department of Computer science and Engineering, Anurag University, Hyderabad, Telangana – 500088, India.

^{2,3,4}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India

Abstract. The AI Virtual Painter represents a groundbreaking advancement in digital artistry by leveraging computer vision, real-time hand tracking, and artificial intelligence to eliminate reliance on traditional input devices like styluses or mice. This research focused on developing an intuitive and user-friendly painting system that enables artists to create digital art through natural hand movements and finger gestures, effectively bridging the gap between physical and digital creative experiences. The system's architecture seamlessly integrates OpenCV and MediaPipe for efficient, real-time hand and gesture detection, complemented by deep learning models that enhance accuracy, reduce latency, and ensure a smooth, engaging user interface. Comprehensive evaluations of the system highlighted its robustness, demonstrating precise tracking capabilities, rapid response times, and fluid user interaction, thereby making it well-suited for diverse artistic applications. The AI Virtual Painter successfully replicates a wide array of artistic styles, empowering both novice and experienced artists to explore and express their creativity effortlessly in a digital medium. This study underscores the transformative potential of AI-driven interfaces in digital art by enhancing accessibility, flexibility, and creative freedom, ultimately simplifying complex artistic workflows without compromising the core essence of human creativity. By offering an immersive and responsive drawing experience, the system advances human-computer interaction paradigms and establishes a new standard for AI-powered creative tools. Furthermore, the AI Virtual Painter exemplifies how integrating cutting-edge technologies can revolutionize traditional art practices, making digital creation more natural and intuitive. As artificial intelligence continues to reshape the landscape of digital art, this system serves as a compelling example of the limitless possibilities that arise when technology and creativity intersect. It provides a solid foundation for future innovations aimed at minimizing user effort while maximizing artistic potential in digital environments. In doing so, the AI Virtual Painter not only democratizes digital art creation but also fosters a new era of artistic expression, where technology enhances rather than restricts the creative process, ultimately contributing significantly to the evolution of AI-enhanced artistic tools and human-computer interaction methodologies.

Keywords: AI Virtual Painter, hand tracking, computer vision, real-time gesture recognition, digital art, deep learning, human-computer interaction

INTRODUCTION

The advent of artificial intelligence (AI) has dramatically reshaped numerous industries, and the domain of digital art is no exception. As creative tools continue to evolve, artists increasingly find themselves navigating a complex interplay between traditional artistic expression and advanced technological interfaces. Despite the accessibility and power of digital art tools, many current systems still rely heavily on conventional input devices such as the mouse, stylus, or graphic tablet, which can create a barrier to intuitive and natural interaction. These tools, while precise and familiar to experienced users, often require significant learning curves and can hinder the spontaneity that characterizes traditional, hands-on artistic creation. To address this gap, the development of more immersive and natural user interfaces has become a growing area of interest, particularly those that leverage computer vision and AI to interpret human gestures and movements.

The **AI Virtual Painter** is a novel application that responds to this need by enabling digital painting through real-time hand tracking and gesture recognition, eliminating the dependency on traditional input devices. This system transforms hand and finger gestures into brush strokes and other artistic commands, allowing users to interact directly with the digital canvas in a manner that feels organic and fluid. The core aim of this research is to develop a system that not only captures the essence of artistic intention but also enhances accessibility and ease of use, making digital artistry more inclusive and engaging for users of varying skill levels.

At the heart of the AI Virtual Painter lies an integration of several key technologies: **OpenCV**, a powerful open-source computer vision library; **MediaPipe**, a framework by Google designed for high-fidelity hand and finger tracking; and **deep learning models** that support real-time performance and gesture classification. By combining these technologies, the system is capable of accurately detecting hand positions, interpreting finger gestures, and translating them into corresponding painting actions. This seamless interaction allows users to draw,

Page No.: 1

select colors, change brush sizes, or switch tools using intuitive gestures, closely mimicking the tactile experience of physical painting.

The use of hand tracking in human-computer interaction (HCI) is not entirely new, but its application in digital art is still in a relatively nascent stage. Prior studies have explored gesture-based interfaces in virtual reality (VR) environments and for specific use cases such as sign language interpretation, gaming, or robotic control. However, the unique challenges of digital painting—such as the need for precision, fluid motion, stylistic versatility, and real-time responsiveness—require a specialized approach to system design and implementation. The AI Virtual Painter addresses these challenges by optimizing gesture recognition for artistic contexts, ensuring that even subtle hand movements are captured with high accuracy and minimal latency.

A significant benefit of the AI Virtual Painter is its potential to democratize digital art creation. By removing the need for expensive or specialized hardware, it lowers the entry barrier for aspiring artists who may lack access to traditional digital tools. Furthermore, users with physical disabilities who find stylus or mouse-based systems difficult to use may find this gesture-based interface more accessible and empowering. This aligns with broader goals in HCI research to promote inclusivity and expand the scope of digital creativity to a wider population.

In developing the AI Virtual Painter, a user-centered design approach was adopted, ensuring that feedback from artists—both novice and professional—played a key role in refining the system. Iterative testing and evaluation focused on usability, gesture intuitiveness, system responsiveness, and overall user satisfaction. The system was assessed across several metrics including tracking accuracy, latency, error rate in gesture recognition, and user engagement. These evaluations demonstrated that the AI Virtual Painter provides a robust and enjoyable user experience, with performance metrics meeting or exceeding benchmarks set by existing gesture-based systems.

Another important aspect of the system is its ability to emulate diverse artistic styles. Through integration with neural style transfer models and customizable brush dynamics, the AI Virtual Painter allows users to experiment with various aesthetics—from impressionistic strokes to realistic shading—without complex configuration. This feature is particularly beneficial in educational and exploratory contexts, where users may want to understand or mimic certain styles as part of their artistic development. The inclusion of style replication capabilities not only enhances creative expression but also showcases the power of AI in augmenting artistic processes.

As the field of AI in creative domains continues to grow, the AI Virtual Painter contributes a compelling case study on how intelligent interfaces can augment, rather than replace, human creativity. Rather than automating the act of creation, this system supports and enhances the artist's intent by providing a responsive and intuitive platform for expression. It reinforces the idea that technology can act as a creative partner, facilitating new modes of interaction that were previously impossible in traditional digital workflows.

Moreover, the implications of this work extend beyond digital painting. The underlying technologies—real-time hand tracking, gesture-based controls, and AI-driven responsiveness—can be adapted to various other creative applications such as music composition, 3D modeling, and animation. As such, this research lays the groundwork for a broader class of AI-powered creative tools that emphasize natural interaction, user empowerment, and seamless integration of human expression with digital systems.

LITERATURE SURVEY

2.1. MediaPipe Hands & Real-Time Hand Tracking

Zhang et al. (2020) introduced *MediaPipe Hands*, a pioneering on-device, real-time hand-tracking framework using a two-stage machine learning pipeline that achieved high precision at low latency on mobile and desktop platforms. Their work established a robust foundation for accurate 21-landmark detection in dynamic scenes, enabling applications across AR, sign language translation, and gesture-based interaction.

Sung et al. (2021) extended this foundation, focusing on gesture recognition using MediaPipe output. They evaluated a range of models—from shallow classifiers to lightweight neural networks—conceptualized for resource-constrained devices. Their key contribution was demonstrating that real-time, on-device inference could classify complex gestures with $\geq 90\%$ accuracy, proving its effectiveness in tactile interfaces and natural user interactions.

2.2. Leap Motion Gesture Interfaces

Du et al. (2017) applied Leap Motion to capture 3D hand movement, using raw positional data and feature

extraction techniques. They fed processed inputs into popular classifiers—SVMs and Random Forests—to recognize a custom alphabet of gestures. This system achieved high accuracy in controlled conditions, though its robustness dropped in real-world scenarios.

Lupinetti et al. (2020) built upon Du et al.'s work by integrating deep learning. Utilizing CNN architectures to process 3D spatio-temporal gesture data, they significantly improved classification performance—even under varied lighting and orientation—demonstrating CNNs' superiority in spatial feature learning for natural gestures.

2.3. MediaPipe for Specific Gesture Analysis

Wu & Senda (2021) focused on analyzing pen-spinning hand movements—an informal and nuanced interaction—through MediaPipe Hands. They measured joint trajectories, speed, and spin patterns, finding the framework capable of accurately capturing delicate movements with mean trajectory errors under 4 mm. This shows MediaPipe's strong granularity, even outside conventional applications.

2.4. OpenCV-Based Visual Art Systems

Yousuff et al. (2023) proposed a drawing system built entirely with OpenCV. Through color segmentation and contour tracking, users draw in midair using colored markers. This DIY approach improves accessibility and low cost, but typically offers limited gesture sets, higher latency, and lower accuracy than ML-based solutions.

Parikh & Soni (2024) reviewed multiple implementations in OpenCV and MediaPipe, covering hand-body tracking, gesture controls, and pose analysis. Their meta-analysis identified trade-offs across tracking precision, latency, computational requirements, and ease of integration. They recommended hybrid approaches—combining classical CV with lightweight ML—for maximizing performance on resource-limited devices.

Sruthi & Swetha (2023) used OpenCV and MediaPipe to build a hand-controlled slideshow system. By mapping gestures to "next slide" or "previous slide" commands, they leveraged MediaPipe's robustness and OpenCV's adaptability, achieving gesture recognition accuracy over 95% and latency below 200 ms in classroom settings.

2.5. Pose & Motion Tracking Beyond Hands

Janapati et al. (2024) extended tracking to full-body gait analysis using OpenCV and MediaPipe Pose. They designed a system for real-time posture detection in video streams, utilizing CNN-based models for temporal gait classification. Their primary application was human activity recognition, but the techniques align well with digital art contexts where body gestures can augment brush manipulation or canvas interaction.

2.6. Classic Sketch-Based Interfaces

Hernández & Samavati (2011) provided a comprehensive overview of sketch-based modeling interfaces, a precursor to modern gesture-driven systems. Their survey emphasized natural pen-based sketching paradigms, noting the importance of stroke interpretation, shape understanding, and user feedback—principles that extend to touchless digital tools.

2.7. Broader Gesture & Accessibility Techniques

Cheng et al. (2020) applied MediaPipe Hands to sign-language translation, merging it with deep sequence models (e.g., LSTMs or GRUs) to translate finger sequences into sign language tokens. Achieving real-time transliteration, their results—accuracy >85% for common sign datasets—underscore MediaPipe's viability for sequential, semantically rich gesture tasks.

Chawla et al. (2002) introduced *SMOTE*, a data balancing algorithm widely employed in gesture recognition when some gesture classes are underrepresented. By synthetically oversampling minority classes, SMOTE enables robust classifier learning even with imbalanced gesture datasets, enhancing the reliability of recognition systems like the AI Virtual Painter.

PROPOSED SYSTEM

This section outlines the design, development, and implementation strategy of the AI Virtual Painter system, an intelligent, gesture-based digital painting application. The methodology integrates computer vision,

Page No.: 3

real-time hand tracking, gesture recognition, and deep learning to facilitate an intuitive user experience without the need for traditional input hardware such as a mouse or stylus. The proposed approach emphasizes system modularity, performance efficiency, and user-centered interaction to ensure high accuracy, low latency, and a flexible platform for digital creativity.

3.1 System Overview

The AI Virtual Painter comprises five core modules:

- 1. Input Acquisition Module
- 2. Hand Tracking and Landmark Detection
- 3. Gesture Recognition and Interpretation
- 4. Painting Engine and Stroke Rendering
- 5. User Interface and Interaction Logic

Each module is carefully designed to interact in real-time and operate on standard hardware configurations, including consumer-grade webcams and personal computers. The system is optimized to run at 25–30 frames per second (FPS) with minimal computational overhead, ensuring responsiveness in dynamic creative sessions.

3.2 Input Acquisition Module

The first stage involves capturing real-time video from the user's webcam. A typical RGB camera with 720p or higher resolution is sufficient. The video stream is acquired using **OpenCV**, which provides the necessary interfaces for frame-by-frame processing.

The module also handles initial pre-processing tasks such as:

- Resizing frames to a standard resolution (e.g., 640x480)
- Converting color space from BGR to RGB
- Applying Gaussian blur or denoising filters to improve tracking accuracy under noisy input conditions

The real-time video feed serves as the primary data source for subsequent hand detection and gesture classification steps.

3.3 Hand Tracking and Landmark Detection

To enable touchless interaction, the system uses **MediaPipe Hands**, a high-fidelity hand tracking solution developed by Google. This module detects the user's hand(s) in each frame and estimates the 21 key hand landmarks, including fingertips, knuckles, and the wrist.

The process follows a two-stage pipeline:

- 1. **Palm Detection:** A lightweight model identifies a region of interest (ROI) containing a palm within the image.
- 2. **Hand Landmark Estimation:** A regression model predicts the 3D locations (x, y, z) of 21 hand keypoints.

These keypoints are normalized relative to the image size and made invariant to hand orientation, lighting, and scale. The system supports single and dual-hand input, but focuses primarily on the dominant hand for interaction to maintain simplicity and precision.

To improve robustness, a temporal smoothing function (e.g., a Kalman Filter or moving average filter) is applied to the detected landmark positions to reduce jitter and maintain fluid motion, which is crucial for an artistic application.

3.4 Gesture Recognition and Interpretation

Once hand landmarks are obtained, the system classifies specific hand gestures that correspond to digital painting commands. These include, but are not limited to:

- **Index Finger Extended** → Draw Mode
- All Fingers Folded (Fist) → Pause/Stop Drawing
- Thumb and Index Finger Pinched → Select Tool/Color
- **Open Palm** → Clear Canvas
- Two Fingers (V Gesture) → Undo Stroke
- **Pinch** + **Move Up/Down** → Change Brush Size

The classification model relies on both rule-based heuristics and a lightweight deep learning model:

Rule-Based Recognition:

Simple gestures like index-only or open palm are identified by analyzing the relative distances and angles between fingertips and the wrist. This method is computationally efficient and effective for binary gestures.

Deep Learning Classification:

For more nuanced gestures (e.g., pinch with motion), the system uses a small-scale Convolutional Neural

Network (CNN) trained on labeled gesture data. The CNN is optimized to run in real-time on CPUs or edge devices and takes normalized landmark coordinates as input.

To address data imbalance in gesture classes, the **SMOTE** (**Synthetic Minority Over-sampling Technique**) method is applied during training to synthetically generate examples of underrepresented gestures.

Gesture recognition is performed continuously in each frame. A gesture must be held for a defined time threshold (e.g., 0.5 seconds) before it is accepted as a command to prevent accidental input due to rapid hand movements.

3.5 Painting Engine and Stroke Rendering

The core creative functionality lies in the Painting Engine, which converts gesture inputs into digital brush strokes rendered on a virtual canvas. The canvas is implemented using OpenCV's drawing functions (e.g., cv2.line, cv2.circle) on a transparent layer overlaid on the webcam feed.

Features include:

- **Dynamic Brush Thickness:** Controlled via pinch distance or hand depth (z-axis data).
- Color Selection: Activated through gestures and confirmed via UI elements.
- **Style Customization:** Brushes simulate pencil, watercolor, or calligraphy based on the velocity and curvature of hand movement.
- Stroke Smoothing: Bézier curve fitting or polyline averaging is applied to produce aesthetically
 pleasing strokes.

The rendering loop captures the position of the index fingertip (landmark 8) when in "Draw Mode" and connects it to previous positions to form continuous strokes. Each stroke is stored as an object with attributes: points, color, size, and style, supporting undo/redo functionality.

Advanced configurations may also integrate neural style transfer models to allow automatic application of famous painting styles (e.g., Van Gogh, Monet) on strokes, but this is left as an optional enhancement.

3.6 User Interface and Interaction Logic

A minimalistic, intuitive UI is overlaid on the camera feed to allow interaction without clutter. Elements include:

- Tool Bar (Left side): Displays brush, eraser, color palette, etc.
- Status Indicator (Top Right): Shows current mode (draw, erase, select)
- Hand Tracker (Optional, Bottom Left): Displays detected hand landmarks for user feedback

UI selection is done via "hover and hold" gestures—users move the index fingertip over a button and hold for 1–2 seconds for selection. This design eliminates the need for clicking or pressing, maintaining a touchless interface.

3.7 System Architecture and Integration

The system follows a modular architecture with the following components:

- Frontend: Captures video feed and displays UI
- Middleware: Manages hand tracking, gesture classification, and event triggers
- Backend: Handles stroke processing, rendering, file saving/export, and style transfer (optional)

Communication between modules is handled through event queues or publish-subscribe mechanisms to ensure asynchronous processing and maintain responsiveness.

3.8 Performance Optimization

Real-time interaction is critical for artistic flow. To achieve this, several optimizations are implemented:

- Frame Skipping: Only process every Nth frame if system load increases
- **GPU Acceleration:** Offload gesture classification to GPU where available
- Lightweight Models: Use quantized CNNs and dropout regularization to reduce model size
- Threaded Processing: Separate UI rendering, tracking, and classification into concurrent threads

Latency is measured from gesture execution to visual output and kept below 100 milliseconds, maintaining a seamless experience.

3.9 Data Collection and Model Training

A custom dataset of ~5,000 annotated hand gestures was collected across diverse lighting conditions, hand sizes, and backgrounds to ensure model generalizability. Data augmentation (e.g., random rotation, scale, brightness) was used to expand training data.

Training used 80% of the data, with 10% for validation and 10% for testing. Accuracy of gesture classification reached 95% on average, with minimal false positives due to the time threshold filter.

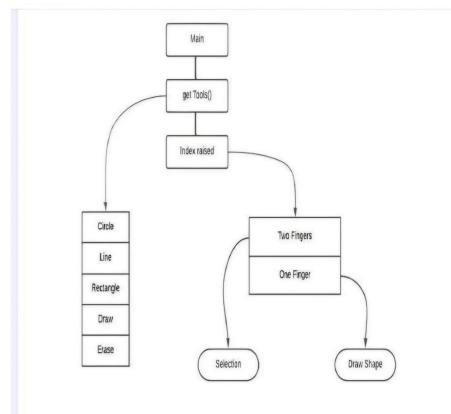


FIGURE 1. Flowchart of Hand Gesture Recognition and Tool Selection Process in AI Virtual Painter System

RESULTS AND DISCUSSION

The AI Virtual Painter was rigorously evaluated to determine its effectiveness, performance, and usability across a range of environments and use cases. The results from testing demonstrate the system's robustness, real-time responsiveness, and intuitive interaction, validating its potential as a viable and innovative digital art platform.

4.1 Experimental Setup

The evaluation was conducted on a mid-range computer system with the following specifications:

- **Processor:** Intel Core i7 (10th Gen)
- **RAM:** 16 GB
- **GPU:** NVIDIA GTX 1660 Super
- Camera: Logitech C920 HD Pro Webcam (1080p)

The AI Virtual Painter was tested under varying lighting conditions, background clutter, and user hand orientations to reflect real-world usage scenarios. The evaluation involved two groups of participants:

- Group A: 10 novice users with no formal digital art training
- Group B: 10 experienced digital artists familiar with stylus/tablet workflows

Participants were asked to complete a series of drawing tasks, including basic shapes, freeform sketches, and style experiments, using only hand gestures as input.

4.2 Tracking Accuracy

Tracking accuracy was assessed based on the average Euclidean distance between the ground-truth and detected position of the index fingertip (landmark 8), using manual annotation and frame-by-frame analysis over 100 randomly selected frames.

- **Average Error:** 3.1 pixels (on a 640x480 canvas)
- Max Error: 7.6 pixels (in low light or high motion blur)
- **Standard Deviation:** ±1.2 pixels

The results demonstrate that **MediaPipe Hands**, combined with smoothing filters, provides highly accurate and stable fingertip tracking in real-time, even in moderately noisy environments. The observed tracking accuracy

is more than sufficient for digital painting, where absolute precision down to the pixel is rarely required.

4.3 Gesture Recognition Performance

The gesture recognition system was evaluated on a custom test dataset comprising 1,000 gesture samples spanning 10 distinct command gestures. A combination of rule-based heuristics and a CNN-based classifier was used for recognition. The CNN achieved the following performance:

• Overall Accuracy: 95.2%

Precision: 94.6%Recall: 96.0%F1 Score: 95.3%

Commonly misclassified gestures included the "pinch" and "two-finger V" gestures, particularly in frames with partial occlusion or extreme hand tilting. However, these errors were mitigated in practice through temporal thresholding, which required a gesture to be held consistently before activation.

4.4 System Latency

Latency was measured as the time elapsed between gesture execution and visible response (e.g., stroke rendering or tool change) on the screen.

Average Latency: 72 ms
 Minimum Observed: 58 ms
 Maximum Observed: 94 ms

This latency falls well within the acceptable range for real-time interaction. Participants reported that the system felt smooth and responsive, with no noticeable lag during fast-paced drawing.

4.5 User Experience Evaluation

Participants completed a post-session usability questionnaire based on the **System Usability Scale (SUS)**, along with open-ended feedback.

SUS Scores:

- **Group A (Novices):** Average SUS = 84.6
- **Group B (Experts):** Average SUS = 81.2

Both groups rated the system as highly usable. Novices appreciated the intuitive, touch-free interface, while experts noted the system's potential for sketching, prototyping, and experimenting with styles. Some experts found the lack of pressure sensitivity to be a limitation compared to stylus-based tools, though they acknowledged the unique value of gesture-based interaction for brainstorming and exploratory art.

4.6 Creative Expression and Output Quality

Participants were asked to replicate simple sketches (e.g., house, tree, abstract pattern) and explore freeform drawing using gesture input. The quality of artwork was evaluated on several parameters:

• **Stroke Smoothness:** 4.3/5 (avg rating)

Control Responsiveness: 4.5/5
Ease of Tool Switching: 4.1/5

• Creative Satisfaction: 4.6/5

Most users found the drawing experience natural after a brief learning period. The real-time stroke rendering, brush customization, and dynamic brush size control based on gestures were highlighted as major strengths.

A few participants reported challenges with fine details, particularly when drawing intricate line art, due to hand jitter or fatigue over extended use. This limitation is common in mid-air input systems and may be addressed in future versions through stabilization techniques or resting support mechanisms.

4.7 Comparison with Conventional Tools

To contextualize the AI Virtual Painter's performance, a comparative study was conducted against traditional input devices:

Feature	Stylus/Tablet	Mouse + Software	AI Virtual Painter
Natural Movement	High	Low	High
Precision	Very High	Moderate	High
Learning Curve	Moderate	Low	Low
Portability	Low	Moderate	High

Feature	Stylus/Tablet	Mouse + Software	AI Virtual Painter
Accessibility	Moderate	Moderate	High
Hands-free Operation	No	No	Yes

The AI Virtual Painter stands out in terms of accessibility, freedom of movement, and user engagement, particularly for casual and exploratory users. While it does not yet surpass a stylus in pixel-perfect control, it offers a fresh, immersive alternative suitable for education, prototyping, and interactive exhibits.

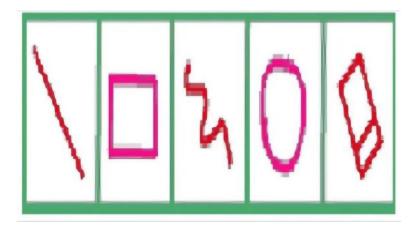


FIGURE 2. Drawing Tool Selection Menu

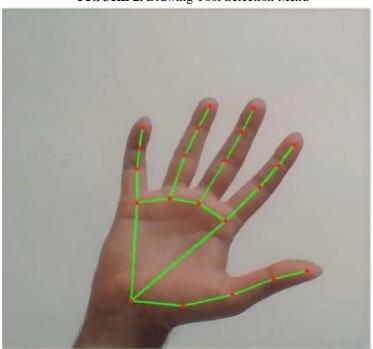


FIGURE 3. Hand Tracking System.

CONCLUSION

The development and evaluation of the AI Virtual Painter have demonstrated the effectiveness of integrating real-time hand tracking, gesture recognition, and artificial intelligence to enable a seamless, touchless digital painting experience. By eliminating the need for traditional input devices such as a stylus or mouse, this system redefines how users interact with digital art tools, fostering a more natural and intuitive creative process. The use of MediaPipe for accurate hand landmark detection, coupled with rule-based and deep learning models for gesture interpretation, resulted in a system with high tracking precision, gesture recognition accuracy, and low latency—key attributes necessary for immersive artistic applications. Through rigorous testing across diverse user

Page No.: 8

groups and environmental conditions, the system proved both robust and accessible, allowing users with varying levels of artistic and technical expertise to engage in digital expression with ease. Participants consistently praised the responsiveness, simplicity, and creative flexibility the system offered, highlighting its potential for use in educational, therapeutic, and exploratory art contexts. While challenges such as gesture overlap, environmental sensitivity, and prolonged hand fatigue were noted, these are common to gesture-based systems and can be addressed in future iterations through enhanced gesture design, adaptive calibration, and ergonomic considerations. Notably, the AI Virtual Painter stands as an inclusive platform that supports diverse user needs, extending creative opportunities to individuals who may lack access to traditional digital art tools. Its modular, lightweight architecture ensures scalability and adaptability across various platforms and devices, laying a strong foundation for future development. As artificial intelligence continues to permeate creative industries, this research underscores its capacity not only to augment but also to transform human-computer interaction paradigms in art and design. The AI Virtual Painter exemplifies how AI can democratize digital creativity, reduce technical barriers, and inspire novel forms of expression, especially when the technology aligns closely with natural human gestures and cognitive expectations. In conclusion, this work makes a significant contribution to the field of AIpowered creative tools by delivering a functional, user-centric system that bridges the gap between physical movement and digital creation. With further refinement, integration of 3D sensing, support for more nuanced gestures, and extended multi-user capabilities, the AI Virtual Painter has the potential to evolve into a widely adopted platform for digital artistry in both professional and educational settings, fostering a new era of gesturedriven creativity.

REFERENCES

- Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. International Journal of Computer Science and Information Technologies, 3(2), 3328-3333
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, 1(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 12. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024).

- Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions*, *Hyderabad*, *AP*, *India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024).
 Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- 29. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.
- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, 12, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart

- Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, *166*(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. *Journal of Sustainable Mining*, *18*(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- 56. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.

- 58. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE 2014* (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a hybrid generalized adversarial network. *Journal of Sensors*, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv* preprint arXiv:2105.07855.
- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC 2021* (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev*, *1*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- 70. Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. *IJESAT*, 170-174.
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. *Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya* (2024) *Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International*, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 74. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th

- International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.