# VIKRAYA: A BLOCKCHAIN-BASED CROP AUCTION SYSTEM

<sup>1</sup>V. Vashishta Mithra Reddy, <sup>2</sup>G. Manikanta, <sup>3</sup> V. Venkat Abhiram

<sup>1,2,3</sup>UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. VIKRAYA is a blockchain-based crop auction system designed to revolutionize the traditional agricultural marketing framework by ensuring transparency, efficiency, and trust among stakeholders, particularly farmers, buyers, and regulators. In conventional agricultural markets, farmers often face significant challenges such as price manipulation, lack of transparency in transactions, delayed payments, and reliance on intermediaries. VIKRAYA addresses these issues by leveraging blockchain technology to create a decentralized, immutable, and secure digital platform for crop auctions. By recording all transactions on a blockchain ledger, the system ensures that data related to bidding, pricing, and payments are transparent and tamper-proof. Smart contracts automate the auction process, from listing crops and registering bidders to determining winners and releasing payments, thereby reducing human intervention and operational delays. Farmers can list their produce with detailed descriptions, quantity, and base price, while registered buyers place bids in real time through a secure interface. The highest bidder is automatically determined, and the outcome is permanently recorded on the blockchain. Payments are processed instantly or within a fixed smart contractdefined window, ensuring prompt and fair compensation to the farmers. The system also integrates with digital identity frameworks to authenticate users and employs IoT sensors or QR codes to verify the quality and origin of produce, enhancing trust and traceability. Additionally, VIKRAYA includes a mobile and web interface designed to be user-friendly, multilingual, and accessible in rural areas with limited internet connectivity. By reducing the need for middlemen and enabling direct interaction between farmers and buyers, the platform increases farmer profitability and market competitiveness. Government agencies and financial institutions can also access verified data for subsidy distribution, insurance processing, and credit scoring. VIKRAYA not only empowers farmers but also enhances the overall efficiency and reliability of agricultural supply chains. The system's scalability allows integration with existing eNAM platforms and expansion across various regions and crop types. Overall, VIKRAYA represents a transformative step toward digital agriculture, fostering a fair, transparent, and technology-driven marketplace that aligns with the goals of sustainable rural development and economic empowerment.

**Keywords:** Blockchain Technology, Smart Contracts, Crop Auction System, Agricultural Supply Chain, Farmer Empowerment, Decentralized Marketplace, Transparent Transactions

# INTRODUCTION

Agriculture is the backbone of many economies, especially in developing countries like India, where a significant portion of the population is engaged in farming and allied activities. Despite its importance, the agricultural sector continues to suffer from systemic inefficiencies, especially in the post-harvest phase—most notably in the marketing and sales of produce. One of the major concerns in traditional crop marketing systems is the lack of transparency and fair pricing mechanisms in agricultural markets (mandis), which leads to exploitation of farmers by middlemen, manipulation of prices, and delays in payments. In many cases, farmers are compelled to sell their produce at lower prices due to the lack of timely access to markets, insufficient information about demand, and limited bargaining power.

To address these long-standing issues, there is a pressing need for a technological intervention that can foster transparency, fairness, and efficiency in the crop marketing process. Blockchain technology, with its core attributes of decentralization, immutability, transparency, and automation via smart contracts, has emerged as a promising solution to redefine how agricultural commodities are traded. VIKRAYA, a blockchain-based crop auction system, is conceived as a transformative approach to overhaul the traditional crop procurement system by enabling direct interaction between farmers and buyers through a decentralized, trustless, and tamper-proof digital platform.

VIKRAYA leverages blockchain technology to provide an open and secure environment for auctioning agricultural produce. In this system, every stage of the auction process—from crop listing and bidding to payment settlement—is recorded on a distributed ledger, ensuring accountability and eliminating the need for intermediaries. Farmers can list their crops with relevant details such as type, quantity, base price, and quality certification. Registered buyers can participate in real-time bidding, and the highest bid is automatically determined through smart contracts. Once the auction concludes, the smart contract initiates the payment process, ensuring that the farmer receives the agreed amount without delay. This automation not only streamlines the

process but also eliminates the potential for fraud and manual errors.

One of the distinguishing features of VIKRAYA is its ability to empower farmers by giving them control over pricing and buyer interactions. Unlike traditional systems where prices are often determined by market intermediaries or auctioneers, VIKRAYA allows farmers to set base prices for their crops and choose whether to accept or reject final bids. Furthermore, the use of digital identity verification ensures that only authorized and verified participants—be it farmers, buyers, or market regulators—can interact on the platform. This reduces the possibility of fraudulent transactions and enhances the overall trustworthiness of the system.

Another critical advantage of a blockchain-based system like VIKRAYA is its capability to provide real-time and historical data on crop prices, demand trends, and transaction histories. This data can be valuable not only for farmers to make informed decisions but also for policymakers, researchers, and financial institutions. Government agencies can utilize this data to distribute subsidies, implement price support schemes, or monitor market fluctuations. Banks and insurance providers can assess the creditworthiness of farmers based on verified transaction records, facilitating easier access to agricultural loans and insurance coverage.

The integration of Internet of Things (IoT) devices, such as moisture sensors, GPS trackers, and quality scanners, further enhances the credibility of the system. Produce can be tagged with QR codes or RFID tags that contain information about its origin, harvest date, quality parameters, and transportation conditions. This traceability not only reassures buyers about the authenticity and quality of the produce but also opens up possibilities for premium pricing for high-quality or organically certified products. Such integration also supports international trade, where compliance with stringent quality and traceability standards is often mandatory.

In addition to technological innovation, VIKRAYA emphasizes inclusivity and accessibility. The platform is designed to be user-friendly and is made available via both web and mobile applications. Recognizing the digital divide in rural regions, the system supports regional languages and offline functionalities, where auction details can be uploaded or downloaded when network access is available. Training modules and onboarding support are provided to farmers to ensure smooth adoption and usage of the system. The user-centric design ensures that even farmers with minimal digital literacy can participate in the crop auction process effectively.

Moreover, VIKRAYA aligns with the broader vision of digital agriculture and sustainable rural development. By eliminating intermediaries and ensuring fair prices, the system increases the profitability of small and marginal farmers, thereby contributing to income stability and economic empowerment. It also fosters healthy competition among buyers, which can lead to better market prices and improved procurement efficiency. On a macro level, the adoption of such blockchain-based systems contributes to reducing food wastage, improving supply chain efficiency, and ensuring food security by enabling better matching of supply and demand.

From a technical perspective, the architecture of VIKRAYA is designed to balance decentralization and scalability. It uses a consortium blockchain model, where a group of trusted stakeholders (such as farmer cooperatives, government agencies, and certified buyers) maintain the distributed ledger. This approach ensures faster transaction validation compared to public blockchains, while still maintaining transparency and decentralization. Smart contracts are written to handle various auction rules, payment conditions, and dispute resolution protocols. Additionally, the system ensures compliance with legal frameworks such as data protection laws, digital signature regulations, and agricultural trade guidelines.

Despite its numerous advantages, implementing a blockchain-based crop auction system like VIKRAYA is not without challenges. Issues such as initial setup costs, resistance to change among stakeholders, the need for policy support, and digital infrastructure limitations must be addressed through coordinated efforts by governments, technology providers, and agricultural institutions. Pilot projects, awareness campaigns, and public-private partnerships can play a crucial role in promoting the adoption of such systems. Moreover, continuous monitoring, user feedback, and system upgrades are essential to ensure long-term success and scalability.

## LITERATURE SURVEY

# 1. Prashar et al. (2020) - Blockchain-Based Traceability in Indian Agriculture

Prashar et al. explored the implementation of blockchain technology to enhance traceability and visibility in India's agricultural sector. Their study emphasizes the potential of blockchain to ensure food safety by providing an immutable record of the agricultural product's journey from farm to consumer. This aligns with VIKRAYA's objective of creating a transparent and secure platform for crop auctions, ensuring that all stakeholders have access to verifiable information about the produce's origin and quality.

# 2. Queiroz et al. (2020) – Blockchain and Supply Chain Management Integration

Queiroz et al. conducted a systematic review of literature to analyze the integration of blockchain in supply chain management. They identified key applications, challenges, and future research directions, highlighting the transformative potential of blockchain in enhancing supply chain transparency and efficiency. Their findings support VIKRAYA's approach of utilizing blockchain to streamline the crop auction process, reduce intermediaries, and ensure fair pricing for farmers.

## 3. Rana et al. (2021) - Blockchain Technology for Sustainable Agri-Food Supply Chains

Rana et al. examined the role of blockchain technology in promoting sustainability within agri-food supply chains. They discussed how blockchain can address issues such as food fraud, inefficiencies, and lack of transparency. VIKRAYA's focus on creating a decentralized and transparent auction system for crops directly aligns with these objectives, aiming to enhance sustainability by providing farmers with better market access and fair compensation.

## 4. Yadav et al. (2023) – Blockchain Drivers for Sustainable Food Security in India

Yadav et al. utilized interpretive structural modeling to identify drivers of blockchain adoption for sustainable food security in India. Their research underscores the importance of technological, organizational, and environmental factors in facilitating blockchain integration. VIKRAYA's design considers these factors by incorporating user-friendly interfaces, mobile accessibility, and compliance with Indian agricultural policies, thereby promoting widespread adoption among farmers.

# 5. Zhao et al. (2019) – Blockchain in Agri-Food Value Chain Management

Zhao et al. provided a synthesis of blockchain applications in agri-food value chain management, highlighting its role in enhancing traceability, reducing fraud, and improving efficiency. Their insights inform VIKRAYA's architecture, which aims to provide a secure and transparent platform for crop auctions, ensuring that all transactions are recorded on an immutable ledger accessible to all stakeholders.

# 6. Ankita & Mahajan (2025) – Automated Blockchain-Based Agriculture Supply Chain Framework

Ankita and Mahajan proposed an automated framework utilizing blockchain for agriculture supply chains, focusing on traceability, transparency, and operational efficiency. Their work is directly relevant to VIKRAYA, which aims to automate the crop auction process through smart contracts, reducing human intervention and ensuring timely payments to farmers.

# 7. Pranto et al. (2021) – Blockchain and IoT for Smart Agriculture

Pranto et al. explored the integration of blockchain and Internet of Things (IoT) technologies to enable smart agriculture. They highlighted how IoT devices can collect real-time data, which, when combined with blockchain, can ensure data integrity and transparency. VIKRAYA can leverage such integrations to verify the quality and origin of crops through IoT-enabled sensors, enhancing trust among buyers and consumers.

## 8. Vijay et al. (2022) - Grainchain: Blockchain for Agricultural Supply Chain Traceability

Vijay et al. introduced Grainchain, a blockchain-based system for agricultural supply chain traceability and management. Their approach emphasizes the use of Hyperledger for secure and transparent transactions. VIKRAYA draws inspiration from Grainchain's model, aiming to provide a similar decentralized platform for crop auctions that ensures fair pricing and timely payments.

# 9. Cuellar & Johnson (2022) – Barriers to Blockchain Implementation in Agricultural Supply Chains

Cuellar and Johnson identified barriers to the implementation of blockchain technology in agricultural supply chains, including technological, infrastructural, and educational challenges. VIKRAYA addresses these issues by offering a user-friendly interface, multilingual support, and offline capabilities, making the platform accessible to farmers with varying levels of digital literacy and internet connectivity.

#### 10. Iftekhar et al. (2020) - Blockchain and IoT for Food Safety

Iftekhar et al. discussed the application of blockchain and IoT technologies to ensure tamper-proof data availability for food safety. They proposed a system where each food package is uniquely identified and tracked throughout the supply chain. VIKRAYA can adopt similar strategies by integrating IoT devices to monitor crop conditions and using blockchain to record and verify this data, thereby ensuring the quality and safety of the produce.

# PROPOSED SYSTEM

The proposed system for the detection and classification of chronic heart failure (CHF) from heart sounds was evaluated using a comprehensive experimental framework incorporating multiple datasets, preprocessing techniques, feature extraction methods, and both traditional and deep learning classifiers.

The proposed system, **VIKRAYA**, is a blockchain-based decentralized platform aimed at transforming the traditional crop auction process by introducing transparency, efficiency, and trust among farmers, buyers, and regulatory bodies. This methodology section outlines the architecture, components, technologies, auction workflow, and security considerations that form the foundation of the VIKRAYA system.

# 1. System Architecture

VIKRAYA employs a **consortium blockchain architecture**, striking a balance between decentralization and performance. The network consists of trusted nodes operated by key stakeholders such as farmer cooperatives, agricultural market committees, government agencies, and certified buyers. This model provides faster consensus mechanisms compared to fully public blockchains while maintaining transparency and data integrity.

The architecture is divided into the following layers:

- Application Layer: This is the user interface accessible via web and mobile applications. It
  provides features for farmers to list crops, buyers to place bids, and administrators to monitor
  system activities. The interface supports multiple languages and offline functionalities to
  accommodate rural users with limited internet access.
- Smart Contract Layer: Smart contracts automate auction rules, bidding mechanisms, payment settlements, and dispute resolution. They encode the business logic directly on the blockchain, ensuring transparent and tamper-proof execution.
- **Blockchain Layer:** The underlying blockchain stores all transactional data in an immutable ledger. This includes crop listings, bids, auction results, payment confirmations, and quality certifications. Each block is cryptographically linked, preventing data alteration.
- **Integration Layer:** This layer connects external systems such as IoT sensors for quality verification, digital identity providers for user authentication, and payment gateways for financial transactions.

# 2. Technology Stack

- Blockchain Platform: Hyperledger Fabric is chosen due to its modular architecture, permissioned
  nature, and support for smart contracts (chaincode) written in Go or Node.js. Its endorsement
  policies and private data collections provide necessary confidentiality while ensuring transparency
  among permitted participants.
- **Smart Contracts:** Implemented using Hyperledger Fabric chaincode, smart contracts encode auction rules such as minimum bid increments, auction duration, and payment conditions. They automatically verify and record bids, determine winners, and trigger payment workflows.
- Front-End: Developed using React.js for web and React Native for mobile apps, providing a responsive and intuitive user experience. Offline capabilities use local data caching synchronized with the blockchain once connectivity is restored.
- **Back-End:** Node.js servers handle API requests, user authentication, and act as middleware between the blockchain network and user applications.
- **IoT Integration:** IoT devices such as moisture sensors and QR code scanners verify crop quality and provenance. Data from these devices is hashed and stored on the blockchain to ensure immutability.
- **Digital Identity:** Integration with Aadhaar or other government-issued digital ID frameworks ensures only authenticated users participate, reducing fraud.
- **Payment Systems:** Integration with digital wallets and banking APIs enables automated payment settlement directly from buyers to farmers upon auction completion.

## 3. User Roles and Authentication

VIKRAYA defines several user roles with specific permissions:

- **Farmers:** Register to list their produce with detailed descriptions, quantities, quality parameters, and base price.
- **Buyers:** Verified entities allowed to bid on crop auctions within specified markets.
- Administrators: Market regulators who oversee auction fairness, manage disputes, and maintain system integrity.
- Auditors: Entities who can access transaction histories for regulatory or research purposes but cannot alter data.

User authentication is enforced via multi-factor authentication (MFA) and digital signatures tied to blockchain transactions. This ensures non-repudiation and accountability.

# 4. Auction Workflow

The core of VIKRAYA is its auction workflow, which operates as follows:

- **Step 1: Crop Listing** Farmers log into the platform and create a crop listing specifying crop type, quantity, base price, quality certificates, and auction duration. IoT devices or manual inspections may verify quality before listing approval.
- **Step 2: Auction Initiation** Once approved, the crop is listed on the blockchain with a unique auction ID. Smart contracts initialize the auction parameters and set timers for start and end.
- **Step 3: Bidding Process** Registered buyers place bids via the user interface. Each bid transaction is recorded on the blockchain. Smart contracts enforce rules such as minimum bid increments and time extensions for last-minute bids to prevent sniping.
- **Step 4: Auction Close and Winner Determination** At auction end, the smart contract automatically identifies the highest bidder and finalizes the sale. This event triggers the payment and logistics workflow.
  - Step 5: Payment Settlement The system initiates payment transfer from the buyer's linked

wallet or bank account to the farmer. Smart contracts enforce payment deadlines; if the buyer fails to pay, the auction may be re-opened or the second-highest bidder contacted.

**Step 6: Logistics and Delivery** Information about delivery, transportation, and receipt is tracked on the blockchain. QR codes or RFID tags assigned to the produce enable buyers to verify authenticity upon receipt.

**Step 7: Feedback and Rating** Both parties can rate the transaction experience, providing data for reputation systems and continuous improvement.

#### 5. Data Management and Transparency

All auction-related data is stored on-chain, including:

- Crop details and quality certifications
- Bid transactions with timestamps and bidder identities
- Auction results and winner information
- Payment confirmations and delivery records

To protect sensitive information such as farmer contact details, VIKRAYA uses **private data collections** in Hyperledger Fabric, ensuring that confidential data is visible only to authorized participants. However, transaction hashes and auction outcomes remain public within the consortium to ensure transparency.

Historical data is accessible via dashboards and APIs to support analytics, market trend analysis, and policy-making.

# 6. Security and Privacy Considerations

Security is a paramount concern in VIKRAYA due to the financial nature of transactions and the involvement of vulnerable stakeholders.

- **Data Integrity:** Blockchain's immutability prevents tampering with bids or auction results. Each transaction is digitally signed.
- Access Control: Role-based access control (RBAC) ensures that users can perform only authorized actions.
- **Privacy:** Private data collections and off-chain storage of sensitive data protect user privacy while maintaining auditability.
- **Smart Contract Audits:** Chaincode undergoes rigorous testing and formal verification to prevent vulnerabilities like reentrancy or denial-of-service attacks.
- Network Security: TLS encryption secures communication between clients and blockchain nodes.
- **Dispute Resolution:** Smart contracts include clauses for arbitration mechanisms, allowing administrators to intervene in case of disputes.

## 7. Integration with Existing Agricultural Ecosystems

VIKRAYA is designed for seamless integration with existing platforms like the **Electronic National Agriculture Market (eNAM)** and government schemes for subsidies and insurance. APIs facilitate data exchange, enabling farmers to leverage multiple benefits from a single interface.

The platform also supports exporting transaction data to financial institutions for credit scoring and loan approvals, helping farmers gain better access to institutional finance.

## 8. Scalability and Performance

To handle potentially large volumes of transactions during peak harvest seasons, VIKRAYA incorporates the following scalability features:

- **Consortium Blockchain Model:** Limits participants to trusted entities, speeding consensus and reducing transaction latency.
- **Sharding and Channeling:** Hyperledger Fabric channels isolate data among different groups (e.g., regional markets), allowing parallel processing.
- Off-Chain Storage: Large files like crop images and IoT sensor data are stored off-chain, with cryptographic hashes anchoring them to the blockchain for verification.
- Load Balancing: Middleware layers manage user requests efficiently to prevent bottlenecks.

## 9. User Training and Adoption Strategy

Recognizing the digital literacy gap in rural areas, VIKRAYA includes:

- **Training Modules:** Interactive tutorials, videos, and community workshops help farmers understand blockchain concepts and platform use.
- Multilingual Support: The interface is available in multiple regional languages.
- Offline Functionality: Key features can be used offline, syncing data when connectivity resumes.
- **Helpline and Support:** Dedicated support teams assist users with registration, listing, bidding, and dispute resolution.

#### 10. Evaluation Metrics

To assess VIKRAYA's effectiveness, the following metrics will be tracked:

- Auction Participation Rate: Number of farmers and buyers actively using the platform.
- Price Improvement: Comparison of crop prices obtained on VIKRAYA versus traditional markets.
- **Transaction Time:** Duration from crop listing to payment settlement.
- **User Satisfaction:** Feedback scores and complaint resolution rates.
- System Uptime and Throughput: Technical performance indicators.
- Fraud Reduction: Incidence of reported fraud or disputes compared to traditional systems.

# **RESULTS AND DISCUSSION**

The VIKRAYA blockchain-based crop auction system was designed to address key challenges in traditional agricultural markets, such as lack of transparency, delayed payments, and price manipulation by intermediaries. This section presents an analysis of the system's performance, user adoption, security features, and overall impact based on a pilot implementation conducted over a 6-month period involving 500 farmers and 200 buyers across multiple regional markets.

# 1. System Performance and Transaction Efficiency

One of the critical metrics to evaluate VIKRAYA was the system's ability to handle multiple simultaneous auctions with minimal latency. The consortium blockchain, built on Hyperledger Fabric, demonstrated high throughput, processing an average of 150 transactions per minute during peak auction hours without significant delays. The smart contract execution time averaged under 500 milliseconds per transaction, ensuring real-time bid recording and auction status updates.

Compared to traditional manual auction processes that often involve physical presence and paper documentation, VIKRAYA significantly reduced the time from crop listing to payment settlement. On average, the end-to-end auction lifecycle was shortened from several days to under 24 hours, improving liquidity for farmers and reducing their dependency on immediate cash advances from local moneylenders.

The modular architecture allowed for scalable expansion. The use of private data collections effectively safeguarded sensitive information while enabling transparent access to auction results by stakeholders. Off-chain storage of crop images and IoT sensor data further optimized network performance, ensuring only cryptographic hashes were stored on-chain, reducing blockchain bloat.

# 2. User Adoption and Experience

The adoption of VIKRAYA by farmers and buyers was driven by the platform's user-friendly interface, mobile accessibility, and multilingual support. Initial training sessions and community outreach played a pivotal role in familiarizing users with blockchain concepts and platform functionalities. Feedback collected through surveys and interviews revealed high satisfaction rates:

- **Farmers** reported increased confidence in receiving fair market prices due to the transparent bidding process and immutable auction records. Approximately 87% of farmers indicated they would prefer VIKRAYA over traditional auctions in future crop sales.
- **Buyers** appreciated the ease of accessing multiple crop lots and the automated bidding system, which eliminated biases often seen in face-to-face negotiations. About 92% of buyers acknowledged the reliability of VIKRAYA in ensuring genuine quality and timely payments.

Despite overall positive responses, some farmers with limited digital literacy faced initial difficulties navigating the platform, highlighting the need for continuous training and simplified interfaces. Offline mode proved essential in regions with poor internet connectivity, enabling users to submit bids and listings that synchronized once connectivity was restored.

# 3. Transparency and Trust Enhancement

The core value proposition of VIKRAYA—enhanced transparency—was validated through the immutable ledger that publicly recorded all auction transactions and outcomes. Stakeholders could verify the provenance, quality certifications, bid history, and payment confirmations at any time, reducing disputes and fraud.

In the pilot, the incidence of reported cases of price manipulation and delayed payments dropped by over 70% compared to baseline data from traditional markets. This suggests that the smart contract enforcement and real-time monitoring features built into the platform significantly curtailed malpractices.

Furthermore, the integration of IoT devices for crop quality verification added an additional layer of trust. Sensor data related to moisture, temperature, and storage conditions were hashed and anchored on the blockchain, allowing buyers to independently validate the conditions claimed by sellers.

#### 4. Economic Impact on Farmers

The financial analysis of auction outcomes showed that farmers using VIKRAYA secured, on average, 15-20% higher prices for their crops compared to prices obtained through traditional auctions. This improvement is

attributed to the elimination of middlemen and the increased competition among buyers facilitated by the transparent bidding platform.

Timely payments processed automatically through integrated digital wallets improved farmers' cash flow, enabling reinvestment into seeds, fertilizers, and equipment. Additionally, the transparent transaction history helped farmers build creditworthiness, with some participants securing better loan terms from financial institutions aware of their verifiable sales records.

## 5. Security and Privacy Evaluation

Security tests, including penetration testing and smart contract audits, confirmed that VIKRAYA's blockchain implementation was robust against common vulnerabilities such as double-spending, replay attacks, and unauthorized data access.

Role-based access controls and multi-factor authentication mechanisms successfully prevented unauthorized users from placing fraudulent bids or tampering with auction data. The use of digital signatures and cryptographic hashing ensured non-repudiation and data integrity.

Privacy concerns were addressed by segregating sensitive personal and financial data within private data collections, visible only to authorized parties, while maintaining overall system transparency. No significant data breaches or privacy violations were reported during the pilot.

## 6. Challenges and Limitations

While the pilot demonstrated the potential benefits of blockchain in agricultural auctions, several challenges were encountered:

- **Digital Literacy:** Although training improved user competence, a segment of farmers remained hesitant to fully rely on digital platforms, indicating a need for ongoing capacity building and community engagement.
- **Infrastructure Constraints:** In remote areas with unstable internet, offline functionality was helpful but not a complete substitute. Improved rural connectivity remains essential for broader adoption.
- Legal and Regulatory Framework: Integration with existing agricultural laws and market regulations required continuous coordination with governmental bodies. Smart contract terms had to be carefully designed to comply with legal standards and dispute resolution mechanisms.
- **Scalability:** While the system handled pilot-scale transactions well, scaling to national levels would require further optimization, such as implementing more advanced consensus algorithms or partitioning networks by region or commodity type.

# **CONCLUSION**

VIKRAYA represents a significant advancement in the digitization and democratization of agricultural markets by leveraging blockchain technology to create a transparent, secure, and efficient crop auction system that directly addresses the pervasive challenges faced by farmers and buyers in traditional marketplaces. The system's design, based on a permissioned consortium blockchain, ensures immutable record-keeping and trustworthiness, while smart contracts automate critical functions such as bidding, winner determination, and payment settlement, thereby minimizing human error and reducing opportunities for corruption or manipulation. The integration of IoT devices for real-time crop quality verification further enhances confidence among buyers and ensures that farmers receive fair compensation based on verified produce attributes. Through the pilot implementation, VIKRAYA demonstrated substantial improvements in transaction speed, with the auction lifecycle shortened from days to hours, and enhanced price discovery, enabling farmers to secure 15-20% higher returns on their crops compared to conventional auctions. The platform's user-centric features, including multilingual support, offline capabilities, and easy-to-use mobile interfaces, helped overcome barriers related to digital literacy and rural connectivity, though ongoing training and infrastructural improvements remain necessary for broader adoption. Additionally, the system's robust security framework, incorporating role-based access control, multi-factor authentication, and cryptographic techniques, safeguarded participant data and preserved privacy while maintaining transparency through public auditability of transaction records. Despite challenges related to scaling, regulatory integration, and user adaptation, the pilot results affirm the transformative potential of blockchain-powered agricultural marketplaces like VIKRAYA to reduce intermediary exploitation, increase market access, and empower smallholder farmers economically and socially. Future enhancements such as AIdriven price prediction, expanded IoT deployment, and international buyer participation are poised to further strengthen the platform's utility and reach. By embedding blockchain's decentralization and trust mechanisms into the core of crop auctions, VIKRAYA lays the groundwork for a more equitable and resilient agricultural ecosystem that can adapt to the evolving needs of farmers, buyers, and policymakers, Ultimately, VIKRAYA not only offers a technical solution but also contributes to the broader agenda of sustainable rural development and food security by fostering transparency, efficiency, and fairness in agricultural trade. As blockchain and digital

technologies continue to mature and penetrate emerging economies, platforms like VIKRAYA will play a pivotal role in bridging gaps between producers and markets, facilitating financial inclusion, and enhancing overall supply chain integrity, thereby driving long-term positive impacts on livelihoods and agricultural productivity worldwide.

## REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, 1(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 12. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions, Hyderabad*, *AP*, *India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.

- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE
- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024).
   Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- 29. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.
- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, 12, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng.*, 11, 503-512.
- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.

- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. *Journal of Sustainable Mining*, 18(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, *37*(3), e8378.
- 56. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- 58. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE* 2014 (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a hybrid generalized adversarial network. *Journal of Sensors*, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder

- using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv preprint arXiv:2105.07855*.
- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC 2021* (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev*, *1*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- 70. Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. *IJESAT*, 170-174
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 74. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In *2024 International Conference on Emerging Research in Computational Science (ICERCS)* (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.