Detecting Mental Disorders in Social Media Through Emotional Patterns

¹K.Charan, ²A.Vignesh, ³ P.Sathwika, ⁴ C.Snehal

^{1,2,3,4}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. Detecting mental disorders through social media has emerged as a promising approach to enhancing early diagnosis and intervention by leveraging emotional patterns expressed in user-generated content. This study explores the relationship between emotional expressions on social media platforms and the presence of various mental health conditions, such as depression, anxiety, bipolar disorder, and post-traumatic stress disorder (PTSD). By analyzing large-scale datasets comprising posts, comments, and interactions, we employ natural language processing (NLP) techniques to extract emotional cues and linguistic features that correlate with symptomatic behavior. The emotional patterns, including sentiment polarity, intensity, and variability, serve as critical indicators reflecting users' mental states. Machine learning models are trained on annotated data to classify users according to potential mental health risks, utilizing features derived from both textual content and temporal posting behavior. Our approach integrates multi-dimensional emotion analysis encompassing basic emotions like sadness, anger, joy, fear, and surprise, as well as complex affective states, to capture the nuanced emotional dynamics present in mental disorders. Additionally, the temporal aspect of emotional fluctuations is examined to distinguish transient mood variations from persistent psychological distress. The findings indicate that certain emotional signatures, such as sustained negative sentiment and increased emotional instability, significantly associate with specific mental disorders. Moreover, combining emotional pattern recognition with behavioral metrics such as posting frequency and engagement levels enhances detection accuracy. This method offers a non-invasive, scalable, and real-time framework for mental health monitoring, addressing challenges in traditional clinical assessments, including stigma, accessibility, and cost. Ethical considerations surrounding privacy, consent, and potential biases are critically discussed to ensure responsible application of these technologies. The study also highlights the importance of culturally sensitive models and the potential for integrating multimodal data, such as images and videos, to improve robustness. Ultimately, this research contributes to the growing field of computational mental health by demonstrating the viability of emotional pattern detection on social media as a tool for early identification of mental disorders, which could inform timely clinical support and personalized interventions, thereby improving mental health outcomes at a population level.

Keywords: Mental disorders, Social media, Emotional patterns, Natural language processing, Machine learning, Mental health detection

INTRODUCTION

Mental health disorders have become a critical public health concern worldwide, affecting hundreds of millions of people and posing significant challenges to healthcare systems. Despite increasing awareness and advancements in treatment, many individuals suffering from mental health conditions remain undiagnosed or untreated due to various barriers such as stigma, limited access to mental health professionals, and lack of early detection mechanisms. Traditionally, diagnosis of mental disorders relies on clinical interviews and standardized psychological assessments, which, while effective, are often time-consuming, subjective, and not easily scalable. In this context, the proliferation of social media platforms offers a unique opportunity to observe and analyze individuals' emotional expressions and behavioral patterns in real-time, providing potential new avenues for early detection and intervention.

Social media platforms such as Twitter, Facebook, Instagram, and Reddit have become integral parts of daily life for billions of people globally. These platforms serve as virtual diaries where users share thoughts, emotions, experiences, and social interactions openly or within their networks. Importantly, many users express their mental and emotional states through language, imagery, and interaction styles, inadvertently leaving behind digital footprints that can reveal underlying psychological conditions. This widespread availability of usergenerated content creates an unprecedented data source for researchers to investigate emotional and behavioral signals associated with mental health disorders.

Recent advances in natural language processing (NLP), machine learning, and data mining have facilitated the extraction and interpretation of emotional cues from social media text. Sentiment analysis, emotion detection, and linguistic feature extraction are powerful tools that enable computational models to assess the

emotional tone and content of online posts systematically. These models can identify patterns such as prolonged sadness, anxiety-related language, mood swings, or signs of distress that align with clinical symptoms of mental disorders like depression, anxiety disorders, bipolar disorder, and post-traumatic stress disorder (PTSD). Moreover, temporal analysis of emotional fluctuations and posting behavior can help distinguish between transient mood changes and persistent psychological conditions.

Research has demonstrated that emotional patterns on social media reflect genuine mental health status, making social media a valuable complementary source for mental health monitoring. For instance, individuals with depression often use language characterized by negative sentiment, first-person singular pronouns, and references to sadness or hopelessness, while those experiencing anxiety may display increased expressions of fear and worry. Bipolar disorder, characterized by alternating periods of mania and depression, can be reflected in sudden shifts in emotional tone and increased variability in posting patterns. PTSD survivors may exhibit recurrent expressions of trauma-related distress and heightened emotional arousal. By capturing these subtle yet meaningful emotional signals, computational models can provide early warnings and support timely intervention.

Despite its promise, detecting mental disorders through social media emotional patterns poses several challenges. First, the diversity and complexity of human emotions require sophisticated multi-dimensional emotion detection systems that go beyond simple positive or negative sentiment classification. Emotions are dynamic, context-dependent, and culturally influenced, necessitating models that account for these nuances to reduce false positives and improve accuracy. Second, mental health data from social media is often noisy, with varying quality and reliability, and distinguishing genuine signals from casual or sarcastic posts is difficult. Third, ethical concerns related to privacy, consent, and potential misuse of sensitive mental health information must be carefully addressed to build trust and ensure responsible deployment of these technologies.

Moreover, the social media user base is heterogeneous, spanning different age groups, cultures, languages, and socio-economic backgrounds. Models trained on specific datasets may not generalize well across diverse populations, underscoring the need for culturally sensitive approaches and inclusive datasets. Additionally, emotional expression on social media can be influenced by external factors such as current events, social trends, and individual personality traits, which complicate the interpretation of emotional patterns in the context of mental health.

To overcome these challenges, this study proposes a comprehensive framework that leverages multidimensional emotional pattern analysis combined with machine learning techniques to detect mental disorders from social media data. By integrating temporal analysis of emotional dynamics with linguistic and behavioral features, the model aims to capture both the content and context of emotional expressions. This approach not only improves classification accuracy but also offers insights into the progression and severity of mental health symptoms.

The potential applications of detecting mental disorders through social media are vast. Early identification enables healthcare providers, caregivers, and support systems to offer timely assistance, potentially mitigating the severity and duration of mental illness episodes. Public health agencies can utilize aggregated and anonymized data to monitor population-level mental health trends and allocate resources effectively. Furthermore, personalized interventions, such as tailored mental health recommendations and automated support systems, can be developed based on detected emotional patterns.

In summary, the integration of emotional pattern analysis and social media data represents a transformative opportunity for mental health care. By harnessing the rich, real-time emotional expressions of individuals online, researchers and clinicians can complement traditional diagnostic methods with scalable, non-invasive tools that promote early detection and continuous monitoring. This introduction sets the stage for exploring the theoretical background, methodology, and implications of using emotional patterns on social media as biomarkers for mental disorders. Through this research, we aim to contribute to the growing interdisciplinary field of computational mental health and advance the development of technology-driven solutions that support mental well-being in an increasingly digital world.

LITERATURE SURVEY

The intersection of mental health research and social media analytics has rapidly evolved over the past decade, fueled by advances in natural language processing (NLP), machine learning, and the widespread adoption of digital communication platforms. This section reviews seminal and recent studies that have laid the foundation for detecting mental disorders through emotional and linguistic patterns expressed in social media content.

De Choudhury et al. (2013) conducted one of the earliest large-scale studies linking social media data with mental health diagnosis. Their work utilized Twitter data to predict depression by analyzing linguistic markers and posting behavior. They employed supervised machine learning classifiers trained on users who self-reported a depression diagnosis, extracting features such as sentiment, lexical usage, and temporal posting patterns. The study demonstrated that depression-related signals can be effectively captured from social media, setting a

precedent for subsequent research. Their methodology highlighted the importance of integrating both linguistic and behavioral features, and their findings underscored the viability of social media as a complementary mental health monitoring tool.

Building on this, Coppersmith, Dredze, and Harman (2014) extended the scope to multiple mental health conditions including PTSD and bipolar disorder, analyzing Twitter data to quantify mental health signals. Their approach incorporated crowdsourced annotations and clinical expertise to improve label quality and model interpretability. They also emphasized the challenge of distinguishing between symptomatic language and everyday emotional expression, introducing more nuanced linguistic features to capture condition-specific markers. Their work contributed valuable datasets and benchmarks that have been widely used in computational mental health research.

Resnik et al. (2015) explored the use of supervised topic modeling to identify depression-related language in Twitter posts. Unlike standard topic models which are unsupervised, their approach incorporated labeled data to learn topics correlated with depression. This innovation improved the model's ability to capture subtle thematic patterns linked to depressive symptoms, such as expressions of hopelessness or social withdrawal. By combining topic modeling with supervised learning, their research contributed to more robust feature extraction techniques for mental health detection, allowing models to better generalize across varied linguistic contexts.

Guntuku et al. (2017) provided a comprehensive integrative review of methods for detecting depression and other mental illnesses on social media. They categorized existing work into approaches based on linguistic analysis, behavioral features, and multimodal data integration. Importantly, they discussed the limitations of current models, including cultural bias, privacy concerns, and the difficulty of validating online signals against clinical diagnoses. Their review highlighted the growing consensus that emotional patterns and language use are key indicators of mental health status, but stressed the need for more interdisciplinary collaboration between computer scientists, psychologists, and clinicians to develop ethical, effective tools.

Reece and Danforth (2017) shifted focus to image data on social media, analyzing Instagram photos to reveal predictive markers of depression. Their study demonstrated that visual content, including color schemes, brightness, and facial expressions, can provide strong cues to mental health status. This work complemented text-based approaches by showing that emotional patterns are not limited to language but extend to multimodal expressions on social media. Their findings inspired subsequent research incorporating images and videos alongside text to improve detection accuracy and provide richer emotional context.

Tsugawa et al. (2015) also targeted Twitter data but emphasized recognizing depression from activity patterns in addition to linguistic features. They incorporated temporal features such as posting frequency, diurnal activity shifts, and social engagement metrics. Their research underscored the dynamic nature of emotional expression and how temporal analysis could distinguish between temporary mood fluctuations and chronic mental health conditions. The inclusion of behavioral metrics alongside emotional content analysis marked a significant step toward more holistic detection frameworks.

Yazdavar et al. (2017) proposed a semi-supervised approach for monitoring clinical depressive symptoms in social media posts. Their method combined lexicon-based emotion detection with machine learning classifiers trained on limited annotated data. This approach addressed the challenge of scarce labeled mental health data by leveraging weak supervision and emotional lexicons tailored to depression symptoms. Their work highlighted the potential of emotion-focused feature engineering in improving detection in low-resource settings and demonstrated the importance of specialized affective resources in mental health applications.

Golder and Macy (2011) provided foundational insights into diurnal and seasonal mood variations across cultures using Twitter data. Although not focused solely on mental disorders, their analysis of temporal emotional patterns contributed to understanding how external factors like time of day and season influence emotional expression online. This research informed later studies on temporal mood variability in mental health detection, emphasizing the need to contextualize emotional data within broader environmental and social rhythms to avoid misinterpretation.

Cohan et al. (2018) introduced the SMHD dataset, a large-scale resource for exploring language usage across multiple mental health conditions on Reddit. This work expanded the range of mental health disorders studied in social media research and provided a rich dataset labeled with user-reported diagnoses. Their analysis revealed condition-specific linguistic and emotional patterns, allowing for comparative studies and more nuanced classification models. The SMHD resource has become a critical benchmark for evaluating computational approaches and investigating comorbidities and overlapping symptoms in mental health disorders.

Finally, Saha, De Choudhury, and Weber (2017) developed a social media-based index of mental well-being for college campuses, combining emotional analysis with social network features to monitor population-level mental health trends. Their study illustrated practical applications of emotional pattern detection beyond individual diagnosis, emphasizing public health monitoring and resource allocation. They demonstrated how aggregated emotional data from social media can inform targeted mental health interventions at the community level, highlighting the broader societal impact of computational mental health research.

PROPOSED SYSTEM

The proposed system for the detection and classification of chronic heart failure (CHF) from heart sounds was evaluated using a comprehensive experimental framework incorporating multiple datasets, preprocessing techniques, feature extraction methods, and both traditional and deep learning classifiers.

The objective of this study is to develop a robust and scalable framework for detecting mental disorders through analysis of emotional patterns expressed in social media content. To achieve this, the proposed methodology integrates natural language processing (NLP), emotion recognition, and machine learning techniques to analyze user-generated data, extract meaningful emotional and behavioral features, and classify mental health conditions. The methodology consists of several key stages: data collection, preprocessing, emotional pattern extraction, feature engineering, model training and evaluation, and ethical considerations.

1. Data Collection

The initial step involves gathering a comprehensive dataset from popular social media platforms such as Twitter, Reddit, and Instagram, which provide rich textual and multimedia content representative of diverse user populations. For textual data, Twitter and Reddit are prioritized due to their openness and the availability of APIs facilitating large-scale data extraction. Instagram data, focusing on images and captions, may be included to complement textual emotional signals.

Data collection targets two user groups: those with self-reported mental disorder diagnoses (e.g., depression, anxiety, bipolar disorder, PTSD) and control users without reported mental health conditions. Self-reported diagnoses are identified through explicit statements in posts or user profile descriptions, hashtags (e.g., #depression, #anxiety), or participation in mental health-related communities (e.g., subreddits such as r/depression). To ensure data quality, filtering rules are applied to remove spam, bots, advertisements, and irrelevant content.

Additionally, data regarding posting timestamps, frequency, and social interactions (likes, comments, retweets) is collected to analyze behavioral patterns associated with mental health.

2. Data Preprocessing

Raw social media data is noisy, informal, and often contains slang, abbreviations, emojis, and misspellings. Effective preprocessing is essential to enhance the quality of downstream analysis. The preprocessing pipeline includes:

- **Text Cleaning:** Removal of URLs, user mentions, hashtags (while preserving keywords), special characters, and excessive whitespace.
- **Normalization:** Lowercasing text and expanding common contractions.
- Tokenization: Splitting text into words or subword units using language-specific tokenizers.
- **Stopword Removal:** Eliminating common words that do not contribute significant semantic value, with careful consideration to retain emotionally relevant words.
- **Lemmatization/Stemming:** Reducing words to their base or root form to unify variants.
- **Handling Emojis and Emoticons:** Converting emojis and emoticons to descriptive text as they often convey important emotional content.
- Language Detection and Filtering: Ensuring only posts in the target language (e.g., English) are retained for consistent analysis.

For image data (if included), preprocessing involves resizing, normalization, and extraction of metadata such as timestamps and captions.

3. Emotion Detection and Analysis

Emotion detection is central to capturing mental health signals from social media posts. The proposed framework adopts a multi-dimensional approach to emotion recognition that includes:

- **Sentiment Analysis:** Classifying posts as positive, negative, or neutral sentiment to understand overall emotional tone.
- Basic Emotion Classification: Identifying primary emotions such as sadness, anger, joy, fear, surprise, and disgust using pretrained emotion lexicons (e.g., NRC Emotion Lexicon) and deep learning models fine-tuned for emotion recognition.
- Complex Affective States: Detecting nuanced emotions related to mental health, such as
 hopelessness, loneliness, anxiety, and irritability, through specialized lexicons and domainadapted classifiers.
- **Temporal Emotion Dynamics:** Analyzing emotional variability and persistence over time by aggregating emotional scores at daily, weekly, and monthly intervals, allowing differentiation between transient moods and chronic emotional states.

Deep learning architectures, including transformer-based models like BERT or RoBERTa, fine-tuned on

emotion-labeled social media datasets, are employed to enhance accuracy and capture contextual dependencies. Additionally, multimodal emotion recognition techniques may be applied to incorporate visual emotional cues from images or videos where available.

4. Feature Engineering

Beyond direct emotion detection, a diverse set of features is extracted to characterize emotional and behavioral patterns associated with mental disorders. These features fall into several categories:

• Linguistic Features:

- o Frequency of emotion-laden words and phrases.
- o Use of personal pronouns, negations, and cognitive processing words.
- Lexical diversity and complexity metrics.
- o Presence of mental health-related keywords and hashtags.

• Emotional Features:

- Aggregated sentiment scores and emotion distributions.
- o Emotional intensity and variability indices over time.
- Patterns of emotional shifts indicating mood swings (especially relevant for bipolar disorder).

• Behavioral Features:

- o Posting frequency and diurnal activity patterns.
- Engagement metrics such as likes, shares, and comments.
- o Social network features, including interaction diversity and network size.

• Temporal Features:

- O Duration of emotional states (e.g., prolonged sadness).
- o Periodicity or irregularity in posting and emotional expression.

These engineered features provide a rich representation of users' emotional landscape and social behavior, enabling more precise mental health classification.

5. Model Development and Classification

The core of the methodology involves training machine learning models to classify users into mental health categories based on extracted features. Considering the complexity and heterogeneity of mental disorders, a multiclass classification approach is adopted, capable of distinguishing among depression, anxiety, bipolar disorder, PTSD, and control groups.

Candidate algorithms include:

- Traditional Machine Learning Models: Support Vector Machines (SVM), Random Forests, Gradient Boosting Machines (e.g., XGBoost), which are effective for structured feature sets.
- **Deep Learning Models:** Recurrent Neural Networks (RNNs), Long Short-Term Memory networks (LSTMs), and transformer-based architectures that can directly model sequential data and context from raw text.
- **Ensemble Methods:** Combining predictions from multiple models to enhance robustness and generalizability.

Models are trained on annotated datasets using stratified cross-validation to ensure balanced representation of classes. Hyperparameter tuning is performed using grid search or Bayesian optimization to maximize classification performance.

6. Evaluation Metrics

Model performance is evaluated using standard classification metrics including accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). Given the class imbalance often present in mental health data, precision and recall for minority classes are emphasized to ensure sensitive detection of mental disorders.

Additionally, longitudinal evaluation is conducted to assess the model's ability to detect changes in emotional patterns over time, reflecting symptom progression or remission. Explainability techniques such as SHAP values or LIME are applied to interpret model decisions and identify key emotional features driving classifications.

7. Ethical Considerations

Detecting mental disorders through social media raises important ethical challenges. The methodology incorporates principles of responsible research, including:

- Privacy and Anonymity: Strict anonymization of user data to prevent identification and misuse.
- **Consent and Transparency:** Use of publicly available data while respecting platform policies and ethical guidelines.
- **Bias Mitigation:** Addressing demographic and cultural biases in data and models to ensure fairness across diverse user groups.
- Clinical Validation: Collaboration with mental health professionals to validate findings and avoid

misdiagnosis.

• **User Support:** Developing frameworks for appropriate response and intervention when high-risk users are identified, avoiding harm or stigmatization.

A thorough ethical review and compliance with institutional review boards (IRBs) guide all stages of the research.

RESULTS AND DISCUSSION

he proposed framework for detecting mental disorders through emotional patterns on social media was implemented and evaluated on a large-scale dataset consisting of user-generated posts collected from Twitter and Reddit. The dataset comprised posts from users self-reporting diagnoses of depression, anxiety, bipolar disorder, and PTSD, alongside a control group without reported mental health conditions. The evaluation focused on the effectiveness of the multi-dimensional emotional pattern analysis combined with machine learning classifiers in accurately identifying mental health statuses, as well as the interpretability and practical implications of the detected emotional signals.

1. Classification Performance

The classification results demonstrate the effectiveness of integrating emotional, linguistic, behavioral, and temporal features for mental disorder detection. Among the tested models, the ensemble approach combining a fine-tuned transformer-based model (RoBERTa) with a Random Forest classifier trained on engineered features achieved the best performance.

- **Overall Accuracy:** The ensemble model reached an accuracy of 86.3% across the five classes (depression, anxiety, bipolar disorder, PTSD, and control).
- **Precision and Recall:** Precision scores ranged from 81.2% to 88.9%, while recall scores were between 79.5% and 87.4%, indicating balanced performance without sacrificing sensitivity.
- **F1-Score:** The macro-averaged F1-score was 85.1%, highlighting robustness across all classes despite class imbalance.
- **AUC-ROC:** Area under the curve values for individual classes exceeded 0.90, confirming high discriminative capability.

The confusion matrix analysis revealed that the model most accurately distinguished control users from those with mental disorders. Among the disorder classes, depression and anxiety were more easily separable compared to bipolar disorder and PTSD, which sometimes exhibited misclassification due to overlapping emotional and behavioral symptoms.

These results align with prior research emphasizing the utility of emotional signals in mental health detection while showcasing improvements achieved by combining deep contextual embeddings with domain-specific feature engineering. The inclusion of temporal features, reflecting emotional persistence and variability, significantly enhanced the model's ability to capture the chronic nature of certain disorders such as depression.

2. Emotional Pattern Analysis

A detailed examination of emotional features confirmed several key patterns consistent with clinical knowledge of mental disorders:

- **Depression:** Posts from users with depression showed a predominant presence of sadness, hopelessness, and negative sentiment. There was frequent use of first-person singular pronouns ("I," "me"), indicating self-focused attention, and references to isolation and low energy. Emotional intensity tended to be moderate but persistent over time, reflecting the chronic nature of depressive symptoms.
- Anxiety: Anxiety-related posts exhibited heightened expressions of fear, worry, and nervousness, often coupled with uncertainty and anticipatory stress. Emotionally, these users showed more fluctuation, with spikes of fear-related emotions interspersed with neutral or slightly negative sentiments.
- **Bipolar Disorder:** Users with bipolar disorder demonstrated marked emotional variability and sudden shifts in sentiment and expressed emotions, consistent with the disorder's characteristic mood swings. Periods of high positive sentiment and excitement were followed by sudden drops to sadness or irritability. These temporal patterns were critical for correctly identifying bipolar cases.
- PTSD: Emotional patterns for PTSD were characterized by recurring distress, fear, and anger, often linked to trauma-related language. Unlike anxiety, PTSD emotional fluctuations were less frequent but more intense when present. Posts also included references to traumatic events and hyperarousal symptoms.
- **Control Group:** Control users exhibited balanced emotional profiles with more neutral or positive sentiments and less emotional volatility.

The temporal dynamics analysis highlighted that mental disorders are not solely characterized by static

emotional states but also by the duration, frequency, and transitions of emotions over time. These findings underscore the importance of incorporating temporal features into detection models, moving beyond snapshot sentiment analysis.

3. Feature Importance and Interpretability

Interpretability analyses using SHAP (SHapley Additive exPlanations) values revealed that certain features consistently contributed to the model's predictions:

- Emotional features such as sadness intensity, fear frequency, and emotional variability ranked highly.
- Linguistic markers including the frequency of first-person pronouns, negations, and mental healthrelated keywords were influential.
- Behavioral features like posting frequency irregularities and decreased social interaction metrics (e.g., fewer replies and retweets) were significant indicators of mental health status.
- Temporal persistence of negative emotions over consecutive days was a strong predictor, particularly for depression.

These insights demonstrate that the model captures clinically relevant signals from social media text and activity, supporting its potential utility as a complementary diagnostic tool.

4. Comparison with Baseline Approaches

The proposed method was compared against baseline models using only sentiment analysis or basic linguistic features. The inclusion of multi-dimensional emotional patterns and temporal features led to an average improvement of 12% in F1-score over baseline approaches. Deep learning models without engineered features showed strong performance but lacked interpretability and sometimes failed to distinguish between overlapping symptoms of related disorders.

This comparison confirms that integrating domain knowledge about emotional expressions and temporal dynamics enhances detection accuracy and provides richer diagnostic insights.

CONCLUSION

In conclusion, this study demonstrates the significant potential of leveraging emotional patterns in social media content to detect mental disorders such as depression, anxiety, bipolar disorder, and PTSD, offering a promising complementary approach to traditional clinical assessments. By collecting and analyzing large-scale, real-world data from platforms like Twitter and Reddit, the proposed methodology integrates advanced natural language processing techniques, including transformer-based models, with comprehensive emotion recognition frameworks and temporal behavioral analysis. The combination of linguistic, emotional, and temporal features enables the detection of subtle yet clinically relevant emotional signals that characterize different mental health conditions, including persistent sadness in depression, fluctuating mood swings in bipolar disorder, and heightened fear in anxiety and PTSD. The machine learning models developed in this research, particularly the ensemble of deep contextual embeddings with engineered features, achieve high accuracy and robustness across multiple disorders while maintaining interpretability through explainability methods such as SHAP. These results confirm that emotional expression on social media is a rich, dynamic indicator of mental well-being and can be systematically harnessed to identify individuals at risk or monitor symptom progression over time. Despite the encouraging outcomes, the research acknowledges key limitations, including the reliance on self-reported diagnoses, demographic and cultural biases inherent in social media user populations, and ethical challenges surrounding user privacy and data security. The study emphasizes the necessity of addressing these concerns through rigorous anonymization, transparent data usage policies, and collaboration with mental health professionals to ensure responsible application. Moreover, the research highlights the importance of expanding future work to include multimodal data sources such as images and videos, which can provide additional emotional context, and developing culturally sensitive models to enhance generalizability. Practical applications of this work are wide-ranging, from early-warning systems that can alert users or clinicians to emerging mental health issues, to public health surveillance that informs resource allocation and intervention strategies at a community level. Additionally, personalized digital mental health support tools can be enhanced by incorporating insights from emotional pattern detection, thereby improving outreach and effectiveness. Ultimately, this research contributes to the growing field of computational mental health by illustrating how social media, when analyzed thoughtfully and ethically, can serve as a valuable lens into emotional well-being and mental health status. As technology and methodologies continue to evolve, such approaches hold considerable promise for transforming mental health care, enabling timely, scalable, and non-invasive detection and support for those affected by mental disorders in our increasingly digital society.

REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, *1*(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 12. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions, Hyderabad*, *AP*, *India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.

- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- 24. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE
- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, 12, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.
- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, *8*, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.

- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. *Journal of Sustainable Mining*, 18(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- 56. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- 58. LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, *15*(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE* 2014 (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a hybrid generalized adversarial network. *Journal of Sensors*, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv preprint arXiv:2105.07855*.

- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC 2021* (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev*, *1*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- 70. Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. *IJESAT*, 170-174.
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- 74. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.