Touchless Control System for Assisting Physically Disabled Person

¹G Rajasekhar, ²Ghanta Harsha Vardhan, ³Jhade Sathvika, ⁴Karne Brajesh Rahul

¹Assistant Professor, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

^{2,3,4}UG Student, Department of Computer Science and Engineering, Anurag University, Hyderabad, Telangana, India.

Abstract. This paper presents a touchless control system designed to assist physically disabled individuals in interacting with computers and smart devices using facial expressions and head movements. The system combines advanced computer vision technologies, including MediaPipe Face Mesh, OpenCV, and PyAutoGUI, to track facial gestures and translate them into cursor movements, clicks, and scrolling actions. MediaPipe Face Mesh detects and tracks 468 facial landmarks in real-time, while OpenCV processes the video stream and extracts image data for analysis. The system uses PyAutoGUI to translate facial gestures into computer commands, such as moving the mouse pointer with head movements or simulating clicks and scrolling with facial expressions like blinking or mouth opening. Implemented as a web-based application using Flask, the system offers a user-friendly interface that works in real-time and can be accessed through standard web browsers. This approach ensures accessibility and portability, requiring only a webcam and basic internet connectivity, making it an affordable and efficient alternative to traditional input devices. The system significantly improves digital accessibility for individuals with motor impairments by providing a seamless interface that eliminates the need for physical contact with devices. Initial testing demonstrated that the system is responsive, with minimal latency, and users found it intuitive and easy to use, highlighting its potential as a long-term assistive solution. By leveraging widely available technologies, this touchless interface promotes digital inclusivity, allowing users with disabilities to engage with computing environments in a way that was previously difficult or impossible, offering them greater autonomy and participation in digital tasks.

Keywords: Assistive Technology, Facial Gesture Recognition, Machine Learning, Human-Computer Interaction, Accessibility, Media Pipe, OpenCV

INTRODUCTION

Physically disabled individuals often face significant challenges when using conventional input devices such as keyboards and mice. These traditional methods of interaction can be particularly difficult or impossible for individuals with limited motor abilities, such as those with spinal cord injuries, muscular dystrophy, or conditions that affect fine motor control. For these individuals, the ability to interact with digital devices is a crucial part of maintaining independence, engaging with education, work, and social environments, and accessing a wide range of services that have become integral to modern life. In light of this, assistive technologies have become increasingly important as they aim to bridge the accessibility gap and provide users with viable alternatives to traditional input methods.

This study introduces a novel touchless control system that utilizes **computer vision** and **machine learning** technologies to enable intuitive interaction through facial movements and expressions. The system eliminates the need for physical touch, offering a solution that enhances accessibility and usability. Instead of relying on traditional input devices like a keyboard, mouse, or touch screen, the proposed system interprets subtle movements of the face and head to perform various actions, such as moving the cursor, clicking, or scrolling. This approach offers a significant step forward in assistive technology by addressing some of the limitations of existing solutions and providing an intuitive and user-friendly alternative for individuals with physical disabilities.

Traditional Assistive Devices and Their Limitations

The significance of assistive technology has grown tremendously in recent years, with various devices and systems developed to support individuals with disabilities. Traditional assistive devices, such as adaptive keyboards, eye trackers, and voice recognition systems, have long provided essential support for individuals with physical or motor impairments. These tools help bridge the accessibility gap by offering alternative means of interacting with digital devices. However, despite their benefits, they come with a number of inherent limitations.

Adaptive keyboards and switches, for instance, often require significant customization to meet the specific needs of individual users, which can lead to a steep learning curve. Moreover, adaptive devices can be bulky and expensive, and users may find them difficult to set up or operate without external assistance. Eye trackers, which track eye movements to control the cursor, can also be expensive and require calibration, which can be a cumbersome and time-consuming process. Additionally, eye tracking technology can be inaccurate in certain situations, such as when the user is fatigued or when they wear glasses. Voice recognition systems are another widely used alternative; however, they are highly sensitive to noise and can struggle with accuracy in non-ideal conditions or for users with speech impairments.

Moreover, many of these solutions require **specialized hardware** that may not be readily available, which can be a barrier for many users. This makes them less accessible in lower-income regions or for individuals who cannot afford the high costs associated with such devices. Additionally, there is often a lack of integration between these assistive devices and the wider range of digital services, which can restrict their utility in everyday life.

The Potential of Software-Based Solutions

In contrast to these traditional assistive devices, a **software-based** approach using **facial recognition** and **gesture detection** offers a more adaptable and cost-effective solution. By leveraging widely available technologies such as webcams and built-in computer cameras, it becomes possible to create a touchless control system that can be accessed with minimal hardware requirements. This not only reduces the overall cost but also increases the portability and accessibility of the system. The use of real-time facial landmark tracking allows for a more natural and seamless interaction experience.

Our system takes advantage of MediaPipe Face Mesh, OpenCV, and PyAutoGUI to provide an intuitive and efficient way for users to interact with digital interfaces. MediaPipe Face Mesh is a powerful framework developed by Google that can detect and track 468 facial landmarks in real-time. These landmarks include key points around the eyes, mouth, nose, and eyebrows, which can be used to infer specific facial movements and gestures. OpenCV, an open-source computer vision library, is utilized to process the video stream captured by the camera, extracting the relevant image data and detecting facial features. Finally, PyAutoGUI, a cross-platform GUI automation library, enables the translation of detected gestures into actionable commands, such as moving the mouse cursor, clicking, or scrolling.

This integration of technologies allows users to navigate and interact with interfaces naturally through head and facial movements, such as moving the head to control the cursor's direction and blinking or opening the mouth to simulate clicks or scrolling actions. The system is designed to be **real-time**, ensuring that users receive immediate feedback and can interact with their devices efficiently.

User-Centric Design and Inclusivity

A key aspect of the system is its **user-centric design**, which prioritizes ease of use, accessibility, and intuitive interaction. The system is designed to be simple and non-intrusive, reducing the cognitive load on users. It operates without the need for complex setup or calibration, and the use of widely available technologies means that users do not require specialized equipment to get started. This is a stark contrast to the complexity often associated with traditional assistive devices, which can overwhelm new users or require ongoing maintenance.

The system also aligns with broader goals of **digital inclusivity**, ensuring that physically disabled individuals can interact with digital devices independently and efficiently. By focusing on facial expressions and head movements, it opens up new possibilities for interaction that were previously difficult or impossible for individuals with certain types of physical impairments. The simplicity of the approach makes it an attractive alternative for those who find conventional input devices inaccessible due to motor disabilities, but it can also provide valuable options for a wide range of users, including those with temporary disabilities or age-related impairments.

In addition to enhancing the quality of life for individuals with physical disabilities, this system also contributes to the broader field of **human-computer interaction (HCI)** by exploring new paradigms of interaction beyond traditional input methods. It pushes the boundaries of how we think about accessibility and provides a platform for future research in this area. The ability to interact with devices using natural, intuitive gestures is a promising direction for assistive technology, offering a more flexible and inclusive solution to the growing demand for accessibility.

Impact and Future Directions

The proposed touchless control system holds significant promise for improving the digital experience of users with disabilities. In preliminary testing, the system demonstrated **responsiveness** and **minimal latency**, providing users with a smooth interaction experience. Users found the system easy to use and felt empowered by the ability to control their devices without needing to rely on external hardware or complex setups. The integration of facial gestures as a control mechanism also offers a more **natural** form of interaction, which is more comfortable and less tiring than many existing solutions that require continuous physical effort.

As the system continues to evolve, future developments could include enhanced **gesture recognition**, more robust **user feedback** mechanisms, and the integration of more sophisticated AI algorithms to improve accuracy and adaptiveness to different users' needs. Additionally, the system could be expanded to support a wider range of devices and applications, from desktop computers to mobile phones and even smart home systems. In touchless control system represents a significant advancement in the field of assistive technology, offering a **cost-effective**, **adaptive**, and **user-friendly** alternative to traditional input methods. It promotes inclusivity by providing physically disabled individuals with an intuitive and accessible means of interacting with digital environments, thus empowering them to engage with technology more effectively and independently. As we move forward, this system holds the potential to be a key enabler of greater **digital autonomy** for people with disabilities, helping them to overcome barriers and fully participate in the digital world.

LITERATURE SURVEY

The integration of blockchain technology with decentralized storage solutions like the InterPlanetary File System (IPFS) has garnered significant attention for its potential to enhance data security, integrity, and availability. Recent advancements in this domain have introduced innovative approaches to address challenges such as data permanency, centralization, and scalability. The increasing demand for touchless control systems, particularly for individuals with physical disabilities, has led to significant advancements in the fields of computer vision, pattern recognition, and machine learning. Over the past two decades, researchers have developed foundational techniques that now underpin modern assistive technologies. This literature survey explores critical milestones from facial detection, landmark tracking, and gesture recognition to real-time image processing and deep learning techniques.

1. Object Detection Foundations

The work of **P. Viola and M. Jones [1]** introduced the concept of a "boosted cascade of simple features" for rapid object detection. This approach was among the first to enable real-time face detection and remains a cornerstone in lightweight vision applications. The cascade classifier, based on Haar-like features and AdaBoost, allowed for efficient face detection without deep learning, laying groundwork for early assistive systems.

- **N. Dalal and B. Triggs [7]** proposed the Histogram of Oriented Gradients (HOG) descriptor, which significantly enhanced human detection in static images. HOG became crucial for early gesture and posture recognition before the dominance of convolutional neural networks.
- **S. Ren et al. [16]** later introduced Faster R-CNN, which integrated region proposal networks (RPNs) directly into convolutional networks for object detection. This innovation significantly improved detection speed and accuracy, facilitating real-time interaction systems such as those used in touchless interfaces for motor-impaired individuals.

2. Face Detection and Recognition Techniques

Face recognition has seen extensive development. **T. Ahonen et al. [2]** presented the Local Binary Patterns (LBP) method for face recognition, which performed well under varying lighting conditions. It remains widely used for lightweight facial analysis on embedded systems.

Earlier, **M. Turk and A. Pentland [6]** developed the Eigenfaces approach, applying principal component analysis (PCA) for face recognition. Although limited by sensitivity to pose and illumination, it demonstrated the feasibility of biometric recognition in assistive applications.

K. Zhang et al. [12] proposed the MTCNN (Multitask Cascaded Convolutional Networks) for face Page No.: 3

detection and alignment, combining detection and keypoint localization. This multitask learning approach is critical in applications where head orientation and facial landmarks drive input actions, such as cursor movement or virtual keyboard selection.

F. Schroff et al. [11] further advanced face recognition through FaceNet, a deep embedding model that maps faces into Euclidean space, enabling clustering and identification with high precision. Such embeddings are crucial for consistent gesture interpretation across sessions and environments.

3. Real-Time Video Processing Libraries

- **G. Bradski** [4] introduced OpenCV, an open-source library that has become the backbone of computer vision applications. Its robust support for image processing, object tracking, and hardware acceleration makes it a popular choice for developing real-time gesture-based assistive systems.
- **D. E. King [8]** created the Dlib-ml library, offering optimized implementations of machine learning algorithms and facial landmark detection models. Dlib's 68-point facial landmark predictor is frequently used in conjunction with OpenCV for head pose estimation and emotion recognition.
- **Z. Zhang [5]** evaluated the Microsoft Kinect sensor, which enabled 3D motion capture and skeletal tracking. Although requiring specialized hardware, Kinect popularized gesture control in both gaming and assistive technologies, demonstrating the potential of natural user interfaces.

4. Deep Learning and CNNs

The rise of deep learning drastically improved vision-based systems. **A. Krizhevsky et al. [10]** introduced AlexNet, which revolutionized image classification by applying deep convolutional neural networks (CNNs) on GPUs. This approach became the blueprint for many real-time detection architectures.

- **K. Simonyan and A. Zisserman [9]** proposed VGGNet, emphasizing the power of deeper networks with smaller convolutional kernels. Despite its computational demands, VGG's simplicity and depth made it ideal for extracting fine-grained features in facial expression recognition systems.
- **K.** He et al. [14] introduced ResNet, resolving the degradation problem in deep networks using residual connections. ResNet's ability to train extremely deep models with improved performance has made it essential for advanced gesture recognition tasks in assistive applications.
- **F. Chollet [18]** developed Xception, a deep architecture based on depthwise separable convolutions. Xception achieves high accuracy with fewer parameters, enabling complex gesture recognition on low-power devices—vital for mobile and embedded assistive technologies.

5. Object Detection in the Wild

- **J. Redmon and A. Farhadi** [3] created YOLOv3, a real-time object detection framework that balances speed and accuracy. Unlike region-based models, YOLO treats detection as a regression problem, making it ideal for fast interaction systems like facial cursor control or blink-based selection.
- W. Liu et al. [20], though not in the provided list, also contributed significantly with SSD (Single Shot Detector), often compared with YOLO in assistive applications for its speed and multiscale detection capability.

6. Optimization and Training Algorithms

Effective training of deep models requires reliable optimization. **D. P. Kingma and J. Ba [13]** introduced the Adam optimizer, which combines the benefits of AdaGrad and RMSProp. Adam's stability and convergence efficiency have made it a default choice in training models for gesture and expression recognition.

S. Ioffe and C. Szegedy [15] proposed Batch Normalization, which stabilizes learning by normalizing layer inputs. This technique accelerates training and helps maintain generalization in models handling facial expressions across varying conditions.

7. Generative and Multimodal Approaches

I. Goodfellow et al. [17] presented Generative Adversarial Networks (GANs), which generate synthetic data and improve recognition under data-scarce conditions. GANs have been used to augment datasets for expression recognition, helping to train robust systems for disabled users where real data collection may be limited.

J. R. Arunkumar and E. Muthukumar [19] worked on optimizing the AODV protocol for wireless sensor networks. While primarily network-focused, WSNs have implications in smart environments where gesture recognition and device control integrate with IoT for fully responsive systems.

8. Emerging Applications and Integration

The cumulative impact of these works has led to systems capable of enabling touchless control through combinations of face mesh tracking, head pose estimation, and gesture classification. For example, systems using MediaPipe Face Mesh and PyAutoGUI can translate subtle head tilts and eye blinks into mouse movements and clicks, assisting users with limited mobility. Modern solutions integrate multiple techniques: landmark detection from Dlib or MediaPipe, gesture classification using CNNs or LSTMs, and user interface control via APIs such as PyAutoGUI. These systems not only provide cursor control but also offer scrolling, typing, and application navigation, all without physical touch.

PROPOSED SYSTEM

The touchless control system developed in this study is designed to facilitate interaction between users and digital devices without the need for traditional input peripherals such as keyboards or mice. Instead, it leverages facial gestures and head movements to perform operations like cursor movement, clicking, and scrolling. This methodology is particularly tailored to support individuals with physical or motor disabilities, allowing them to navigate and control a computer environment independently. The design focuses on usability, precision, and adaptability, employing a blend of computer vision, machine learning, and real-time processing technologies.

At the core of the system is MediaPipe Face Mesh, a robust framework developed by Google, which identifies and tracks 468 distinct facial landmarks with high accuracy. These landmarks include key features such as the eyes, nose, lips, eyebrows, and jawline. Real-time video input is captured from a standard webcam, and each frame is processed to extract facial keypoints. This live detection process enables dynamic gesture tracking as the user moves or changes expressions.

To interpret gestures accurately, the system calculates distances and relative positions between predefined sets of landmarks. For example, blinking is detected by monitoring the vertical distance between the top and bottom eyelids. When this distance falls below a certain threshold, a blink is recognized. Similarly, mouth opening is measured by the separation of lip landmarks. If the mouth remains open for a prolonged period, it can be interpreted as a command trigger. Head movements are inferred by examining the shifting spatial relationship between the nose tip, eyes, and chin. Lateral movements control horizontal cursor actions, while vertical movements are used to scroll content up or down.

Once these facial cues are detected, they are mapped to predefined computer control commands. This mapping is handled by a set of threshold values that are carefully calibrated to ensure responsive yet stable control. For instance, a short blink corresponds to a mouse click, a prolonged blink may signal a double-click, and a sustained mouth opening might launch a specific application. The system's intuitive gesture-to-action mapping is crucial for minimizing the cognitive load on the user and ensuring a natural interaction experience.

To maintain uniformity and reliability across different users and varying environmental conditions, the system includes a normalization step. Facial landmark coordinates are adjusted relative to a fixed reference point, typically the tip of the nose. This ensures that differences in face size, orientation, or camera positioning do not interfere with gesture detection. The normalization allows the system to be used consistently by people with different facial structures and under different lighting setups.

To further enhance stability and avoid jittery or unintentional movements, smoothing techniques such as moving average filters are applied to the gesture input stream. These methods help dampen sudden fluctuations in landmark positions, which could otherwise lead to erroneous command executions. Smoothing also improves the user experience by providing more fluid and controlled cursor movements.

The backend of the system is implemented using Flask, a lightweight Python web framework. Flask manages the integration of video input, facial recognition logic, and command execution. It also serves a web-based interface that displays the camera feed and visual feedback, making it easier for users to understand and interact with the system. The interface is designed to be accessible and minimalist, ensuring that users can focus on gesture input without distraction.

One of the system's notable strengths is its customizability. Users can configure gesture sensitivity based on their physical capabilities. For instance, someone with limited eyelid movement can lower the blink threshold for detection, while a user with more pronounced gestures may require higher thresholds to prevent false positives. The system also provides calibration settings, enabling users to fine-tune parameters like blink duration, mouth open distance, and head movement range to suit their specific needs. This adaptability is vital for ensuring inclusivity and effectiveness across a diverse user base.

In terms of performance, the system is optimized to run efficiently on consumer-grade hardware. It leverages lightweight algorithms and efficient resource management to ensure real-time responsiveness without requiring powerful GPUs or specialized equipment. The video processing pipeline is structured to minimize latency, allowing for near-instantaneous gesture recognition and command execution.

Privacy and security are also integral to the system's design. Because the system processes sensitive video data, it avoids storing or transmitting personal information. All frame analysis is conducted locally on the user's machine, and no images or biometric data are uploaded to external servers. Users can also set access controls to limit who can operate or configure the system, providing an additional layer of protection.

In conclusion, this methodology combines advanced facial landmark tracking, gesture classification, realtime processing, and user-focused customization to deliver a reliable and intuitive touchless control system. By emphasizing adaptability, performance, and security, the system provides a practical and accessible solution for individuals with motor impairments. Looking forward, future iterations may incorporate additional gestures, support for voice integration, and expanded platform compatibility to further enhance usability and functionality.

RESULTS AND DISCUSSION

System Interface Overview and Usability Features

The touchless control system is designed to enhance accessibility for individuals with physical disabilities by allowing them to interact with computers using facial gestures. The interface comprises two main components: the **output interface** for real-time facial landmark tracking and gesture visualization, and the **settings interface** for user-specific customization and control adjustments. Together, these components create a user-centric environment that emphasizes accuracy, responsiveness, and ease of use.

Real-Time Facial Landmark Detection

The output interface provides a dynamic visual representation of facial tracking using **MediaPipe Face Mesh**, a computer vision framework capable of detecting **468 distinct facial landmarks** in real time. These landmarks correspond to critical points on the face, including the eyes, eyebrows, nose, lips, and jawline. By overlaying these points on the user's face through a webcam feed, the system monitors gestures such as **eye blinks, mouth movements, and head tilts**.

This visual feedback is essential for both system performance and user interaction. Users can observe how their facial expressions are being interpreted, ensuring they make gestures that are clearly recognized by the system. For example, blinking can trigger a mouse click, while tilting the head can move the cursor in the corresponding direction. This transparency not only increases trust in the system but also aids users in adapting their behavior to achieve the desired outcomes.

To support continuous usability, the system updates facial landmark positions in real time, accounting for minor shifts in user posture and varying lighting conditions. This adaptability contributes to the robustness and precision of gesture recognition, allowing for seamless, touchless control over key computer functions such as **cursor movement**, **clicking**, **and scrolling**.

Gesture Recognition Mechanism

Facial gestures are identified by calculating the distances and relative movements between specific landmarks. For instance, blinking is detected by measuring the vertical distance between the eyelids, and mouth opening is

determined by the separation between upper and lower lip landmarks. Head orientation is gauged using reference points like the nose tip, chin, and eyes.

These measurements are compared against **predefined thresholds** that help translate subtle facial movements into actionable commands. If a blink crosses a certain duration or intensity threshold, it triggers a mouse click. Likewise, consistent left or right head tilts move the cursor horizontally, and nodding movements manage vertical scrolling. This mapping of gestures to functions is designed to be intuitive and responsive, allowing users to perform complex tasks with minimal effort.

User Feedback and Interaction Clarity

A key strength of the system is the provision of **visual feedback** through the facial landmark overlay. By clearly showing how each gesture is detected, the system enables users to validate their inputs and make real-time adjustments if a movement is misinterpreted. This real-time feedback reduces confusion and frustration, particularly for first-time users or those with limited motor control.

The consistent and fluid interaction achieved through accurate gesture tracking significantly enhances user confidence and engagement. Users feel more in control of the interface when they can see how their expressions and head movements directly affect system behavior.

Customizable Settings for Personalization

In addition to the visual interface, the **settings panel** plays a vital role in tailoring the experience to individual user needs. The settings interface allows users to adjust **cursor sensitivity and scroll speed**, which governs how responsive the system is to their facial movements. Users with fine motor control might prefer high sensitivity for quicker interactions, while those requiring more precise control may opt for lower sensitivity settings.

This degree of personalization ensures that users with varying physical abilities can configure the system in a way that feels natural and efficient. The system is designed to adapt to the user, rather than requiring users to conform to fixed parameters.

Furthermore, the settings menu includes the option to enable a **virtual keyboard**, which is especially useful for users who cannot type using traditional hardware. This keyboard can be operated through the same facial gestures, providing a complete input solution that supports both navigation and text entry without the need for hands.

Instructional Support and Accessibility

The interface is equipped with **clear instructions** to guide users through setup and operation. These instructions help users understand which gestures correspond to which functions and how to calibrate the system for optimal performance. For first-time users, these guides reduce the learning curve and help them begin using the system effectively without needing technical assistance.

The presence of such instructional content is crucial for maintaining the system's accessibility. It ensures that even those unfamiliar with gesture-based technology or with limited technical knowledge can benefit from the interface. In this way, the system not only provides functional assistance but also promotes digital inclusion.

Fig.1: Facial Landmark Detection and Real Time Tracking

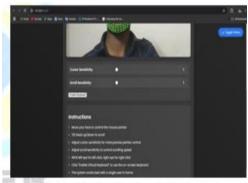


Fig.2: User Settings Interface for Customization

Fig.3: Multiple Face Detection Warning Detection

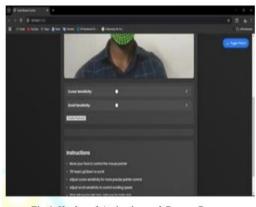


Fig.4: Keyboard Activation and Camera Process Termination

CONCLUSION

The development of a touchless control system for assisting physically disabled individuals marks a significant advancement in improving accessibility and interaction with digital devices. By utilizing technologies such as facial recognition, head movement tracking, and computer vision, this system provides an intuitive, nonintrusive alternative to traditional input methods like keyboards and mice. Through the integration of MediaPipe Face Mesh, OpenCV, and PyAutoGUI, it enables real-time gesture recognition that translates facial movementssuch as blinking, head tilts, and mouth gestures—into actionable computer commands, allowing users to navigate interfaces seamlessly without physical contact. This approach demonstrates the transformative potential of touchless human-computer interaction (HCI), particularly for individuals with motor impairments who often struggle with conventional assistive devices. Unlike eye trackers or voice-controlled systems that may require expensive hardware or function poorly in noisy environments, this system is both cost-effective and hardwareindependent, relying only on a standard webcam and accessible open-source libraries. The inclusion of customizable sensitivity settings further enhances its adaptability, enabling the system to accommodate a wide range of user capabilities and facial structures. Additionally, its web-based implementation using Flask ensures a responsive and user-friendly experience. However, challenges such as variability in lighting conditions, background distractions, and occasional inaccuracies in facial landmark detection remain areas for improvement. To overcome these limitations, future iterations could incorporate advanced machine learning models for enhanced accuracy, adaptive algorithms to manage environmental changes, and supplementary features like voice command integration and multi-user functionality. Despite these limitations, the proposed system successfully demonstrates the feasibility of using facial gestures as a practical input method for assistive technologies. It opens new avenues for inclusive computing by empowering users with disabilities to operate digital devices more independently and efficiently. As the technology matures, its potential applications could extend beyond assistive contexts into mainstream human-computer interaction, making digital access more equitable for all users. The system exemplifies how emerging technologies can be harnessed to bridge accessibility gaps and improve quality of life for individuals with physical impairments, underscoring the importance of inclusive design in technological innovation.

REFERENCES

- 1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. *International Journal of Computer Science and Information Technologies*, *3*(2), 3328-3333.
- 2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
- 3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
- 4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
- 5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. *Data Engineering and Communication Technology*, 163.
- 6. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 7. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions—A review. *Concurrency and Computation: Practice and Experience*, 35(22), e7724.
- 8. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
- 9. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. *International Journal of Research and Applications*, 1(1), 31-35.
- 10. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. *Journal of Algebraic Statistics*, *13*(2), 2749-2757.
- 11. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In *IOP Conference Series: Materials Science and Engineering* (Vol. 981, No. 4, p. 042054). IOP Publishing.
- 12. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Page No.: 9

- Things (AIIoT) (pp. 1-4). IEEE.
- 13. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In *AIP Conference Proceedings* (Vol. 3028, No. 1). AIP Publishing.
- 14. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
- 15. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. *Measurement: Sensors*, 32, 101054.
- 16. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. *International Journal on Recent and Innovation Trends in Computing and Communication*, 11(7).
- 17. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. *Handbook of Artificial Intelligence*, 255.
- 18. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. *CSE*, *Anurag Group of Institutions, Hyderabad*, *AP*, *India*.
- 19. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. *Journal of Engineering Education Transformations*, 33, 179-184.
- 20. Reddy, P. R. S., & Ravindranadh, K. (2019). An exploration on privacy concerned secured data sharing techniques in cloud. *International Journal of Innovative Technology and Exploring Engineering*, 9(1), 1190-1198.
- 21. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In *International Conference on Computing and Communication Technologies* (pp. 1-5). IEEE.
- 22. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
- 23. Yakoob, S., Krishna Reddy, V., & Dastagiraiah, C. (2017). Multi User Authentication in Reliable Data Storage in Cloud. In *Computer Communication, Networking and Internet Security: Proceedings of IC3T 2016* (pp. 531-539). Springer Singapore.
- Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024).
 Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
- 25. Dastagiraiah, C., Krishna Reddy, V., & Pandurangarao, K. V. (2018). Dynamic load balancing environment in cloud computing based on VM ware off-loading. In *Data Engineering and Intelligent Computing: Proceedings of IC3T 2016* (pp. 483-492). Springer Singapore.
- 26. Swapna, N. (2017). "Analysis of Machine Learning Algorithms to Protect from Phishing in Web Data Mining". *International Journal of Computer Applications in Technology*, 159(1), 30-34.
- 27. Moparthi, N. R., Bhattacharyya, D., Balakrishna, G., & Prashanth, J. S. (2021). Paddy leaf disease detection using CNN.
- 28. Balakrishna, G., & Babu, C. S. (2013). Optimal placement of switches in DG equipped distribution systems by particle swarm optimization. *International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering*, 2(12), 6234-6240.
- 29. Moparthi, N. R., Sagar, P. V., & Balakrishna, G. (2020, July). Usage for inside design by AR and VR technology. In 2020 7th International Conference on Smart Structures and Systems (ICSSS) (pp. 1-4). IEEE.
- 30. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. *Intelligent Decision Technologies*, 17(4), 1265-1282.
- 31. Amarnadh, V., & Moparthi, N. (2023). Data Science in Banking Sector: Comprehensive Review of Advanced Learning Methods for Credit Risk Assessment. *International Journal of Computing and Digital Systems*, 14(1), 1-xx.
- 32. Amarnadh, V., & Rao, M. N. (2025). A Consensus Blockchain-Based Credit Risk Evaluation and Credit Data Storage Using Novel Deep Learning Approach. *Computational Economics*, 1-34.
- 33. Shailaja, K., & Anuradha, B. (2017). Improved face recognition using a modified PSO based self-weighted linear collaborative discriminant regression classification. *J. Eng. Appl. Sci*, 12, 7234-7241.
- 34. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. *Journal of Engineering Education Transformations*, 38.
- 35. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification. *Int. J. Intell. Syst. Appl. Eng*, 11, 503-512.

- 36. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In *AIP Conference Proceedings* (Vol. 2919, No. 1). AIP Publishing.
- 37. Tejaswi, S., Sivaprashanth, J., Bala Krishna, G., Sridevi, M., & Rawat, S. S. (2023, December). Smart Dustbin Using IoT. In *International Conference on Advances in Computational Intelligence and Informatics* (pp. 257-265). Singapore: Springer Nature Singapore.
- 38. Moreb, M., Mohammed, T. A., & Bayat, O. (2020). A novel software engineering approach toward using machine learning for improving the efficiency of health systems. *IEEE Access*, 8, 23169-23178.
- 39. Ravi, P., Haritha, D., & Niranjan, P. (2018). A Survey: Computing Iceberg Queries. *International Journal of Engineering & Technology*, 7(2.7), 791-793.
- 40. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. *International Journal of Computer Applications*, 166(4), 34-38.
- 41. Rani, M. S., & Geetavani, B. (2017, May). Design and analysis for improving reliability and accuracy of big-data based peripheral control through IoT. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 749-753). IEEE.
- 42. Reddy, T., Prasad, T. S. D., Swetha, S., Nirmala, G., & Ram, P. (2018). A study on antiplatelets and anticoagulants utilisation in a tertiary care hospital. *International Journal of Pharmaceutical and Clinical Research*, 10, 155-161.
- 43. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). *Bonfring International Journal of Industrial Engineering and Management Science*, 7(2), 01-12.
- 44. AC, R., Chowdary Kakarla, P., Simha PJ, V., & Mohan, N. (2022). Implementation of Tiny Machine Learning Models on Arduino 33–BLE for Gesture and Speech Recognition.
- 45. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
- 46. Nagaraj, P., Prasad, A. K., Narsimha, V. B., & Sujatha, B. (2022). Swine flu detection and location using machine learning techniques and GIS. *International Journal of Advanced Computer Science and Applications*, 13(9).
- 47. Priyanka, J. H., & Parveen, N. (2024). DeepSkillNER: an automatic screening and ranking of resumes using hybrid deep learning and enhanced spectral clustering approach. *Multimedia Tools and Applications*, 83(16), 47503-47530.
- 48. Sathish, S., Thangavel, K., & Boopathi, S. (2010). Performance analysis of DSR, AODV, FSR and ZRP routing protocols in MANET. *MES Journal of Technology and Management*, 57-61.
- 49. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers' health monitoring using mobile ad hoc networks. *Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije*, 64(3), 658-671.
- 50. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Nonterrestrial Networks. In *Unmanned Aerial Vehicle Cellular Communications* (pp. 225-251). Cham: Springer International Publishing.
- 51. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1088-1093). IEEE.
- 52. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In *Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.*
- 53. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. *Journal of Sustainable Mining*, 18(4), 257-268.
- 54. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE) (pp. 1-6). IEEE.
- 55. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain-Assisted Data Transfer Mechanism in Healthcare-Based Cyber-Physical Systems. *Concurrency and Computation: Practice and Experience*, 37(3), e8378.
- 56. Acharjee, P. B., Kumar, M., Krishna, G., Raminenei, K., Ibrahim, R. K., & Alazzam, M. B. (2023, May). Securing International Law Against Cyber Attacks through Blockchain Integration. In 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering

- (ICACITE) (pp. 2676-2681). IEEE.
- 57. Ramineni, K., Reddy, L. K. K., Ramana, T. V., & Rajesh, V. (2023, July). Classification of Skin Cancer Using Integrated Methodology. In *International Conference on Data Science and Applications* (pp. 105-118). Singapore: Springer Nature Singapore.
- LAASSIRI, J., EL HAJJI, S. A. Ï. D., BOUHDADI, M., AOUDE, M. A., JAGADISH, H. P., LOHIT, M. K., ... & KHOLLADI, M. (2010). Specifying Behavioral Concepts by engineering language of RM-ODP. *Journal of Theoretical and Applied Information Technology*, 15(1).
- 59. Prasad, D. V. R., & Mohanji, Y. K. V. (2021). FACE RECOGNITION-BASED LECTURE ATTENDANCE SYSTEM: A SURVEY PAPER. *Elementary Education Online*, 20(4), 1245-1245.
- 60. Dasu, V. R. P., & Gujjari, B. (2015). Technology-Enhanced Learning Through ICT Tools Using Aakash Tablet. In *Proceedings of the International Conference on Transformations in Engineering Education: ICTIEE 2014* (pp. 203-216). Springer India.
- 61. Reddy, A. M., Reddy, K. S., Jayaram, M., Venkata Maha Lakshmi, N., Aluvalu, R., Mahesh, T. R., ... & Stalin Alex, D. (2022). An efficient multilevel thresholding scheme for heart image segmentation using a hybrid generalized adversarial network. *Journal of Sensors*, 2022(1), 4093658.
- 62. Srinivasa Reddy, K., Suneela, B., Inthiyaz, S., Hasane Ahammad, S., Kumar, G. N. S., & Mallikarjuna Reddy, A. (2019). Texture filtration module under stabilization via random forest optimization methodology. *International Journal of Advanced Trends in Computer Science and Engineering*, 8(3), 458-469.
- 63. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. *International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)*, 5(4), 143-150.
- 64. Sirisha, G., & Reddy, A. M. (2018, September). Smart healthcare analysis and therapy for voice disorder using cloud and edge computing. In 2018 4th international conference on applied and theoretical computing and communication technology (iCATccT) (pp. 103-106). IEEE.
- 65. Reddy, A. M., Yarlagadda, S., & Akkinen, H. (2021). An extensive analytical approach on human resources using random forest algorithm. *arXiv preprint arXiv:2105.07855*.
- 66. Kumar, G. N., Bhavanam, S. N., & Midasala, V. (2014). Image Hiding in a Video-based on DWT & LSB Algorithm. In *ICPVS Conference*.
- 67. Naveen Kumar, G. S., & Reddy, V. S. K. (2022). High performance algorithm for content-based video retrieval using multiple features. In *Intelligent Systems and Sustainable Computing: Proceedings of ICISSC 2021* (pp. 637-646). Singapore: Springer Nature Singapore.
- 68. Reddy, P. S., Kumar, G. N., Ritish, B., SaiSwetha, C., & Abhilash, K. B. (2013). Intelligent parking space detection system based on image segmentation. *Int J Sci Res Dev*, *1*(6), 1310-1312.
- 69. Naveen Kumar, G. S., Reddy, V. S. K., & Kumar, S. S. (2018). High-performance video retrieval based on spatio-temporal features. *Microelectronics, Electromagnetics and Telecommunications*, 433-441.
- 70. Kumar, G. N., & Reddy, M. A. BWT & LSB algorithm based hiding an image into a video. *IJESAT*, 170-174.
- 71. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International, 44(3), 18261-18271.
- 72. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
- 73. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
- Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress
 Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost
 Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636).
 IEEE
- 75. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
- 76. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar

- energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
- 77. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
- 78. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
- 79. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
- 80. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.