Volume no :
|
Issue no :
Article Type :
Author :
C. Dastagiraiah, G. Sreeja, T. Santosh Bhargava, V. Tharun Raj, B. Koustubh Srivatsa
Published Date :
Publisher :
Page No: 1 - 16
Abstract : Accurate classification of high-resolution satellite imagery is essential for various socio-economic and environmental applications, including urban planning and natural resource management. This study proposes an enhanced U-Net architecture integrated with a Spatial Pyramid Pooling (SPP) layer to improve pixel-level semantic segmentation of satellite images. The traditional U-Net model often loses critical object boundaries during pooling operations, which can hinder classification performance. By incorporating SPP, which captures multi-scale contextual information, the proposed model retains spatial details and enhances the ability to differentiate between similar land cover types. Experimental results on two public datasets demonstrate that our improved model outperforms existing algorithms trained with various datasets in terms of classification accuracy and boundary preservation.
Keyword Satellite image classification, Deep Learning, U-Net, Spatial Pyramid Pooling, Semantic Segmentation.
Reference:
  1. Reddy, C. N. K., & Murthy, G. V. (2012). Evaluation of Behavioral Security in Cloud Computing. International Journal of Computer Science and Information Technologies3(2), 3328-3333.
  2. Murthy, G. V., Kumar, C. P., & Kumar, V. V. (2017, December). Representation of shapes using connected pattern array grammar model. In 2017 IEEE Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 819-822). IEEE.
  3. Krishna, K. V., Rao, M. V., & Murthy, G. V. (2017). Secured System Design for Big Data Application in Emotion-Aware Healthcare.
  4. Rani, G. A., Krishna, V. R., & Murthy, G. V. (2017). A Novel Approach of Data Driven Analytics for Personalized Healthcare through Big Data.
  5. Rao, M. V., Raju, K. S., Murthy, G. V., & Rani, B. K. (2020). Configure and Management of Internet of Things. Data Engineering and Communication Technology, 163.
  6. Balakrishna, G., Murthy, G. V., Rao, M. N., & Narayana, M. V. (2022). Implementing Solar Power Smart Irrigation System. In Innovations in Computer Science and Engineering: Proceedings of the Ninth ICICSE, 2021 (pp. 561-567). Singapore: Springer Singapore.
  7. Reddy, S. R., & Murthy, G. V. (2025). Cardiovascular Disease Prediction Using Particle Swarm Optimization and Neural Network Based an Integrated Framework. SN Computer Science6(2), 186.
  8. Murthy, G. V., & Kumar, V. V. (2014). A new model of array grammar for generating connected patterns on an image neighborhood. arXiv preprint arXiv:1407.8337.
  9. Murthy, G. V., SwathiReddy, M., & Balakrishna, G. (2019, May). Big Data Analytics for Popularity Prediction. In Journal of Physics: Conference Series (Vol. 1228, No. 1, p. 012051). IOP Publishing.
  10. Kumar, K. M., Latha, P. S., & Murthy, G. V. (2017). Two Stage: Smart Crawler for Analysis of Web Data.
  11. Ramakrishna, C., Kumar, G. K., Reddy, A. M., & Ravi, P. (2018). A Survey on various IoT Attacks and its Countermeasures. International Journal of Engineering Research in Computer Science and Engineering (IJERCSE)5(4), 143-150.
  12. Madar, B., Kumar, G. K., & Ramakrishna, C. (2017). Captcha breaking using segmentation and morphological operations. International Journal of Computer Applications166(4), 34-38.
  13. Ramakrishna, C., Kumar, G. S., & Reddy, P. C. S. (2021). Quadruple band-notched compact monopole UWB antenna for wireless applications. Journal of Electromagnetic Engineering and Science21(5), 406-416.
  14. Chithanuru, V., & Ramaiah, M. (2023). An anomaly detection on blockchain infrastructure using artificial intelligence techniques: Challenges and future directions–A review. Concurrency and Computation: Practice and Experience35(22), e7724.
  15. Ramaiah, M., Chithanuru, V., Padma, A., & Ravi, V. (2022). A review of security vulnerabilities in industry 4.0 application and the possible solutions using blockchain. Cyber Security Applications for Industry 4.0, 63-95.
  16. Padma, A., Chithanuru, V., Uppamma, P., & VishnuKumar, R. (2024). Exploring Explainable AI in Healthcare: Challenges and Future Directions. In Analyzing Explainable AI in Healthcare and the Pharmaceutical Industry (pp. 199-233). IGI Global.
  17. Prashanth, J. S., & Nandury, S. V. (2015, June). Cluster-based rendezvous points selection for reducing tour length of mobile element in WSN. In 2015 IEEE International Advance Computing Conference (IACC) (pp. 1230-1235). IEEE.
  18. Prashanth, J. S., & Nandury, S. V. (2019). A Cluster—based Approach for Minimizing Energy Consumption by Reducing Travel Time of Mobile Element in WSN. International Journal of Computers Communications & Control14(6), 691-709.
  19. Kumar, K. A., Pabboju, S., & Desai, N. M. S. (2014). Advance text steganography algorithms: an overview. International Journal of Research and Applications1(1), 31-35.
  20. Shyam, D. N. M., & Hussain, M. A. (2023). Mutual authenticated key agreement in Wireless Infrastructure-less network by Chaotic Maps based Diffie-Helman Property. Fusion: Practice & Applications13(2).
  21. Shyam, D. N. M., & Hussain, M. A. (2023). A Naive Bayes-Driven Mechanism for Mitigating Packet-Dropping Attacks in Autonomous Wireless Networks. Ingenierie des Systemes d’Information28(4), 1019.
  22. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. Journal of Algebraic Statistics13(2), 2749-2757.
  23. Balram, G., Anitha, S., & Deshmukh, A. (2020, December). Utilization of renewable energy sources in generation and distribution optimization. In IOP Conference Series: Materials Science and Engineering (Vol. 981, No. 4, p. 042054). IOP Publishing.
  24. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) (pp. 1-4). IEEE.
  25. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC) (pp. 1081-1087). IEEE.
  26. Balram, G., & Kumar, K. K. (2022). Crop field monitoring and disease detection of plants in smart agriculture using internet of things. International Journal of Advanced Computer Science and Applications13(7).
  27. Mahammad, F. S., Viswanatham, V. M., Tahseen, A., Devi, M. S., & Kumar, M. A. (2024, July). Key distribution scheme for preventing key reinstallation attack in wireless networks. In AIP Conference Proceedings (Vol. 3028, No. 1). AIP Publishing.
  28. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2024). Extraction for Big Data Cyber Security Analytics. Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2023993, 365.
  29. Tahseen, A., Shailaja, S. R., & Ashwini, Y. (2023, December). Security-Aware Information Classification Using Attributes Extraction for Big Data Cyber Security Analytics. In International Conference on Advances in Computational Intelligence and Informatics (pp. 365-373). Singapore: Springer Nature Singapore.
  30. Lavanya, P. (2024). Personalized Medicine Recommendation System Using Machine Learning.
  31. Lavanya, P. (2024). In-Cab Smart Guidance and support system for Dragline operator.
  32. Lavanya, P. (2024). Price Comparison of GeM Products with other eMarketplaces.
  33. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors32, 101054.
  34. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. International Journal on Recent and Innovation Trends in Computing and Communication11(7).
  35. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. Handbook of Artificial Intelligence255.
  36. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG) (pp. 1-3). IEEE.
  37. Madhuri, K. (2022). A New Level Intrusion Detection System for Node Level Drop Attacks in Wireless Sensor Network. Journal of Algebraic Statistics13(1), 159-168.
  38. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. Journal of Engineering Education Transformations30(3), 322-326.
  39. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. Journal of Electrical Systems20, 900-910.
  40. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. Journal of Theoretical and Applied Information Technology100(13).
  41. Reddy, B. A., & Reddy, P. R. S. (2012). Effective data distribution techniques for multi-cloud storage in cloud computing. CSE, Anurag Group of Institutions, Hyderabad, AP, India.
  42. Srilatha, P., Murthy, G. V., & Reddy, P. R. S. (2020). Integration of Assessment and Learning Platform in a Traditional Class Room Based Programming Course. Journal of Engineering Education Transformations33, 179-184.
  43. Raj, R. S., & Raju, G. P. (2014, December). An approach for optimization of resource management in Hadoop. In International Conference on Computing and Communication Technologies (pp. 1-5). IEEE.
  44. Reddy, P. R. S., Bhoga, U., Reddy, A. M., & Rao, P. R. (2017). OER: Open Educational Resources for Effective Content Management and Delivery. Journal of Engineering Education Transformations30(3), 322-326.
  45. Ramana, A. V., Bhoga, U., Dhulipalla, R. K., Kiran, A., Chary, B. D., & Reddy, P. C. S. (2023, June). Abnormal Behavior Prediction in Elderly Persons Using Deep Learning. In 2023 International Conference on Computer, Electronics & Electrical Engineering & their Applications (IC2E3) (pp. 1-5). IEEE.
  46. Ujwala, B., & Reddy, P. R. S. (2016). An effective mechanism for integrity of data sanitization process in the cloud. European Journal of Advances in Engineering and Technology3(8), 82-84.
  47. DASTAGIRAIAH, D. (2024). A System for Analysing call drop dynamics in the telecom industry using Machine Learning and Feature Selection. Journal of Theoretical and Applied Information Technology102(22).
  48. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. Indonesian Journal of Electrical Engineering and Informatics (IJEEI)12(3), 640-649.
  49. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-7). IEEE.
  50. Latha, S. B., Dastagiraiah, C., Kiran, A., Asif, S., Elangovan, D., & Reddy, P. C. S. (2023, August). An Adaptive Machine Learning model for Walmart sales prediction. In 2023 International Conference on Circuit Power and Computing Technologies (ICCPCT) (pp. 988-992). IEEE.
  51. Rani, K. P., Reddy, Y. S., Sreedevi, P., Dastagiraiah, C., Shekar, K., & Rao, K. S. (2024, June). Tracking The Impact of PM Poshan on Child’s Nutritional Status. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.
  52. Selvaprasanth, P., Karthick, R., Meenalochini, P., & Prabaharan, A. M. (2025). FPGA implementation of hybrid Namib beetle and battle royale optimization algorithm fostered linear phase finite impulse response filter design. Analog Integrated Circuits and Signal Processing123(2), 33.
  53. Deepa, R., Karthick, R., & Senthilkumar, R. (2025). Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing system using arithmetic optimization algorithm. Computer Standards & Interfaces92, 103934.
  54. Kumar, T. V., Karthick, R., Nandhini, C., Annalakshmi, M., & Kanna, R. R. (2025). 20 GaN Power HEMT-Based Amplifiers. Circuit Design for Modern Applications, 320.
  55. Velayudham, A., Karthick, R., Sivabalan, A., & Sathya, V. (2025). IoT enabled smart healthcare system for COVID-19 classification using optimized robust spatiotemporal graph convolutional networks. Biomedical Signal Processing and Control100, 107104.
  56. Gayathri, P., Balamurugan, J., Gowthami, M., Usha, R., Karthick, R., & Selvan, R. S. (2025). Factors Influencing Customers’ Inclination to buy Green Products: An Indian Perspective. In Elevating Brand Loyalty With Optimized Marketing Analytics and AI (pp. 185-202). IGI Global Scientific Publishing.
  57. Ramkumar, G., Bhuvaneswari, J., Venugopal, S., Kumar, S., Ramasamy, C. K., & Karthick, R. (2025). Enhancing customer segmentation: RFM analysis and K-Means clustering implementation. In Hybrid and Advanced Technologies (pp. 70-76). CRC Press.
  58. Tamilselvi, M., Kalaivani, S. S. S., Sunderasan, V., Sailaja, K., Gopal, D., & Karthick, R. (2025). Deep learning for object detection and identification. In Hybrid and Advanced Technologies (pp. 218-223). CRC Press.
  59. Sidharth, S. (2022). Zero Trust Architecture: A Key Component of Modern Cybersecurity Frameworks.
  60. Sidharth, S. (2018). Optimized Cooling Solutions for Hybrid Electric Vehicle Powertrains.
  61. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners’ Views on Docker Development Difficulties: Stack Overflow Analysis.
  62. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
  63. Turlapati, V. R., Thirunavukkarasu, T., Aiswarya, G., Thoti, K. K., Swaroop, K. R., & Mythily, R. (2024, November). The Impact of Influencer Marketing on Consumer Purchasing Decisions in the Digital Age Based on Prophet ARIMA-LSTM Model. In 2024 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-6). IEEE.
  64. Raju, P., Arun, R., Turlapati, V. R., Veeran, L., & Rajesh, S. (2024). Next-Generation Management on Exploring AI-Driven Decision Support in Business. In Optimizing Intelligent Systems for Cross-Industry Application (pp. 61-78). IGI Global.
  65. Sreekanthaswamy, N., Anitha, S., Singh, A., Jayadeva, S. M., Gupta, S., Manjunath, T. C., & Selvakumar, P. (2025). Digital Tools and Methods. Enhancing School Counseling With Technology and Case Studies25.
  66. Sreekanthaswamy, N., & Hubballi, R. B. (2024). Innovative Approaches To Fmcg Customer Journey Mapping: The Role Of Block Chain And Artificial Intelligence In Analyzing Consumer Behavior And Decision-Making. Library of Progress-Library Science, Information Technology & Computer44(3).Deshmukh, M. C., Ghadle, K. P., & Jadhav, O. S. (2020). Optimal solution of fully fuzzy LPP with symmetric HFNs. In Computing in Engineering and Technology: Proceedings of ICCET 2019 (pp. 387-395). Springer Singapore.
  67. Chinchodkar, K. N., & Jadhav, O. S. (2017). Development of mathematical model for the solid waste management on dumping ground at Mumbai for the reduction of existence cost. Int. J. Statist. Syst12, 145-155.
  68. Kalluri, V. S. Optimizing Supply Chain Management in Boiler Manufacturing through AI-enhanced CRM and ERP Integration. International Journal of Innovative Science and Research Technology (IJISRT).
  69. Kalluri, V. S. Impact of AI-Driven CRM on Customer Relationship Management and Business Growth in the Manufacturing Sector. International Journal of Innovative Science and Research Technology (IJISRT).
  70. Kalluri, S. V. S., & Narra, S. (2024). Predictive Analytics in ADAS Development: Leveraging CRM Data for Customer-Centric Innovations in Car Manufacturing. vol9, 6.
  71. Al-Ghanimi, M. G., Hanif, O., Jain, M. V., Kumar, A. S., Rao, R., Kavin, R., … & Hossain, M. A. (2022, December). Two TS-Fuzzy Controllers based Direct Torque Control of 5-Phase Induction Motor. In 2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) (pp. 1-6). IEEE.
  72. Sameera, K., & MVR, S. A. R. (2014). Improved power factor and reduction of harmonics by using dual boost converter for PMBLDC motor drive. Int J Electr Electron Eng Res4(5), 43-51.
  73. Srinivasu, B., Prasad, P. V. N., & Rao, M. R. (2006, December). Adaptive controller design for permanent magnet linear synchronous motor control system. In 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1-6). IEEE.
  74. Rao, M. R., & Prasad, P. V. N. (2014). Modelling and Implementation of Sliding Mode Controller for PMBDC Motor Drive. International journal of advanced research in electrical, electronics and instrumentation engineering3(6).
  75. Sidharth, S. (2017). Real-Time Malware Detection Using Machine Learning Algorithms.
  76. Sidharth, S. (2017). Access Control Frameworks for Secure Hybrid Cloud Deployments.
  77. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
  78. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
  79. Jadhav, V. S., & Jadhav, O. S. (2019). Solving flow-shop scheduling problem to minimize total elapsed time using fuzzy approach. International Journal of Statistics and Applied Mathematics4(5), 130-133.
  80. Deshmukh, M., Ghadle, K., & Jadhav, O. (2020). An innovative approach for ranking hexagonal fuzzy numbers to solve linear programming problems. International Journal on Emerging Technologies11(2), 385-388.
  81. Sidharth, S. (2016). Establishing Ethical and Accountability Frameworks for Responsible AI Systems.
  82. Sidharth, S. (2015). AI-Driven Detection and Mitigation of Misinformation Spread in Generated Content.
  83. Sharma, S., & Dutta, N. (2024). Examining ChatGPT’s and Other Models’ Potential to Improve the Security Environment using Generative AI for Cybersecurity.
  84. Tambi, V. K., & Singh, N. (2015). Potential Evaluation of REST Web Service Descriptions for Graph-Based Service Discovery with a Hypermedia Focus.
  85. Patil, R. D., & Jadhav, O. S. (2016). Some contribution of statistical techniques in big data: a review. International Journal on Recent and Innovation Trends in Computing and Communication4(4), 293-303.
  86. Jadhava, V. S., Buktareb, S. U., & Jadhavc, O. S. (2024). Ranking of Octagonal Fuzzy Numbers for Solving Fuzzy Job Sequencing Problem Using Robust Ranking Technique. Journal of Statistics, Optimization and Data Science1(2), 22-28.
  87. Sidharth, S. (2015). Privacy-Preserving Generative AI for Secure Healthcare Synthetic Data Generation.
  88. Sidharth, S. (2018). Post-Quantum Cryptography: Readying Security for the Quantum Computing Revolution.
  89. Tambi, V. K., & Singh, N. (2019). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications. Development7(11).
  90. Chaudhari, S. A., Gawali, B. W., & Jadhav, O. S. (2022). Statistical analysis of EEG data for attention deficit hyperactivity disorder. Journal of Positive School Psychology, 4046-4053.
  91. Jadhav, S., Machale, A., Mharnur, P., Munot, P., & Math, S. (2019, September). Text based stress detection techniques analysis using social media. In 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) (pp. 1-5). IEEE.
  92. Thepade, D. S., Mandal, P. R., & Jadhav, S. (2015). Performance Comparison of Novel Iris Recognition Techniques Using Partial Energies of Transformed Iris Images and Enegy CompactionWith Hybrid Wavelet Transforms. In Annual IEEE India Conference (INDICON).
  93. Kiran, A., Sonker, A., Jadhav, S., Jadhav, M. M., Naga Ramesh, J. V., & Muniyandy, E. (2024). Secure Communications with THz Reconfigurable Intelligent Surfaces and Deep Learning in 6G Systems. Wireless Personal Communications, 1-17.
  94. Anitha, C., Tellur, A., Rao, K. B., Kumbhar, V., Gopi, T., Jadhav, S., & Vidhya, R. G. (2024). Enhancing Cyber-Physical Systems Dependability through Integrated CPS-IoT Monitoring. International Research Journal of Multidisciplinary Scope5(2), 706-713.
  95. Vandana, C. P., Basha, S. A., Madiajagan, M., Jadhav, S., Matheen, M. A., & Maguluri, L. P. (2024). IoT resource discovery based on multi faected attribute enriched CoAP: smart office seating discovery. Wireless Personal Communications, 1-18.
  96. Jadhav, S., Durairaj, M., Reenadevi, R., Subbulakshmi, R., Gupta, V., & Ramesh, J. V. N. (2024). Spatiotemporal data fusion and deep learning for remote sensing-based sustainable urban planning. International Journal of System Assurance Engineering and Management, 1-9.
  97. Jadhav, S., Chaudhari, V., Barhate, P., Deshmukh, K., & Agrawal, T. (2021). Extreme Gradient Boosting for Predicting Stock Price Direction in Context of Indian Equity Markets. In Intelligent Sustainable Systems: Selected Papers of WorldS4 2021, Volume 2 (pp. 321-330). Singapore: Springer Nature Singapore.
  98. Jadhav, S., Chaudhari, V., Barhate, P., Deshmukh, K., & Agrawal, T. (2021). REVIEW PAPER ON: ALGORITHMIC TRADING USING ARTIFICIAL INTELLEGENCE.
  99. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
  100. Alsudairy, M. A. T., & Vasista, T. G. K. (2014, May). CRASP—a strategic methodology perspective for sustainable value chain management. In Proceedings of the 23rd IBIMA Conference.
  101. Vasista, T. G. K., & AlAbdullatif, A. M. (2015). Turning customer insights contributing to VMI based decision support system in demand Chain management. International Journal of Managing Value and Supply Chains6(2), 37-45.
  102. AlSudairi, M., & Vasista, T. G. K. (2012, September). Service design systems driven innovation approach for total innovation management. In Proceedings of the 7th European Conference on Innovation and Entrepreneurship: ECIE (p. 8). Academic Conferences Limited.
  103. Vasista, T. G. K. (2007). Wise CRM engine. Synergy-The Journal of Marketing5(1), 123-127.
  104. Vasista, T. G. K. (2016). Thoughtful approaches to implementation of electronic rulemaking. Int. J. Manag. Pub. Sect. Inf. Commun. Technol7(2), 43-53.
  105. Vasista, T. G. K. (2015). Strategic Business Challenges in Cloud Systems. Int. J. Cloud Comput. Serv. Archit.5(4), 1-3.
  106. Vasista, T. G. K. (2013). System, spiritual and philosophical perspectives of human life and the role of governance in a socio-economic setting. Unpublished Paper Developed at King Saud University, Riyadh, KSA.
  107. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
  108. Kalaiselvi, B., & Thangamani, M. (2020). An efficient Pearson correlation based improved random forest classification for protein structure prediction techniques. Measurement162, 107885.
  109. Prabhu Kavin, B., Karki, S., Hemalatha, S., Singh, D., Vijayalakshmi, R., Thangamani, M., … & Adigo, A. G. (2022). Machine learning‐based secure data acquisition for fake accounts detection in future mobile communication networks. Wireless Communications and Mobile Computing2022(1), 6356152.
  110. Geeitha, S., & Thangamani, M. (2018). Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. Journal of medical systems42(11), 225.
  111. Thangamani, M., & Thangaraj, P. (2010). Integrated Clustering and Feature Selection Scheme for Text Documents. Journal of Computer Science6(5), 536.
  112. Gangadhar, C., Chanthirasekaran, K., Chandra, K. R., Sharma, A., Thangamani, M., & Kumar, P. S. (2022). An energy efficient NOMA-based spectrum sharing techniques for cell-free massive MIMO. International Journal of Engineering Systems Modelling and Simulation13(4), 284-288.
  113. Narmatha, C., Thangamani, M., & Ibrahim, S. J. A. (2020). Research scenario of medical data mining using fuzzy and graph theory. International Journal of Advanced Trends in Computer Science and Engineering9(1), 349-355.
  114. Thangamani, M., & Thangaraj, P. (2013). Fuzzy ontology for distributed document clustering based on genetic algorithm. Applied Mathematics & Information Sciences7(4), 1563-1574.
  115. Surendiran, R., Aarthi, R., Thangamani, M., Sugavanam, S., & Sarumathy, R. (2022). A Systematic Review Using Machine Learning Algorithms for Predicting Preterm Birth. International Journal of Engineering Trends and Technology70(5), 46-59.
  116. Thangamani, M., & Thangaraj, P. (2010). Ontology based fuzzy document clustering scheme. Modern Applied Science4(7), 148.
  117. Ibrahim, S. J. A., & Thangamani, M. (2018, November). Momentous Innovations in the prospective method of Drug development. In Proceedings of the 2018 International Conference on Digital Medicine and Image Processing (pp. 37-41).
  118. Thamma, S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
  119. Arun, A., Ali A. Alalmai, and D. Gunaseelan. “Operational Need and Importance of Capacity Management into Hotel Industry–A Review.” (2020).
  120. Gunaseelan, D., & Kumar, G. R. (2024). An umbrella view on food habits in the context of health and sustainability for sports persons. Salud, Ciencia y Tecnología-Serie de Conferencias, (3), 890.
  121. Gunaseelan, D., & Arun, A. Tourist Destination Satisfaction: Analysis of Kanyakumari the Spot with Scenic Beauty and Spiritual Temples. Emperor Journal of Economics and Social Science Research3(1).
  122. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
  123. Kumar, J. S., Archana, B., Muralidharan, K., & Kumar, V. S. (2025). Graph Theory: Modelling and Analyzing Complex System. Metallurgical and Materials Engineering31(3), 70-77.
  124. Kumar, J. S., Archana, B., Muralidharan, K., & Srija, R. (2025). Spectral Graph Theory: Eigen Values Laplacians and Graph Connectivity. Metallurgical and Materials Engineering31(3), 78-84.
  125. Srija, R., Kumar, J. S., & Muralidharan, K. (2025). An improvement in estimating the population mean by using quartiles and correlation coefficient. Mathematics in Engineering, Science & Aerospace (MESA)16(1).
  126. Kumar, J. S., Murthy, S., Kumar, B. R., & Solaiappam, S. (2017, January). p-Value analyze the set of optimal value in MOFTP. In 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 1-5). IEEE.
  127. Anandasubramanian, C. P., & Selvaraj, J. (2024). NAVIGATING BANKING LIQUIDITY-FACTORS, CHALLENGES, AND STRATEGIES IN CORPORATE LOAN PORTFOLIOS. Tec Empresarial6(1).
  128. Madem, S., Katuri, P. K., Kalra, A., & Singh, P. (2023, May). System Design for Financial and Economic Monitoring Using Big Data Clustering. In 2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) (pp. 1-7). IEEE.
  129. Srikanth, V., & Dhanapal, D. R. (2012). E-commerce online security and trust marks. International Journal of Computer Engineering and Technology3(2), 238-255.
  130. Lopez, S., Sarada, V., Praveen, R. V. S., Pandey, A., Khuntia, M., & Haralayya, D. B. (2024). Artificial intelligence challenges and role for sustainable education in india: Problems and prospects. Sandeep Lopez, Vani Sarada, RVS Praveen, Anita Pandey, Monalisa Khuntia, Bhadrappa Haralayya (2024) Artificial Intelligence Challenges and Role for Sustainable Education in India: Problems and Prospects. Library Progress International44(3), 18261-18271.
  131. Yamuna, V., Praveen, R. V. S., Sathya, R., Dhivva, M., Lidiya, R., & Sowmiya, P. (2024, October). Integrating AI for Improved Brain Tumor Detection and Classification. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1603-1609). IEEE.
  132. Kumar, N., Kurkute, S. L., Kalpana, V., Karuppannan, A., Praveen, R. V. S., & Mishra, S. (2024, August). Modelling and Evaluation of Li-ion Battery Performance Based on the Electric Vehicle Tiled Tests using Kalman Filter-GBDT Approach. In 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1-6). IEEE.
  133. Sharma, S., Vij, S., Praveen, R. V. S., Srinivasan, S., Yadav, D. K., & VS, R. K. (2024, October). Stress Prediction in Higher Education Students Using Psychometric Assessments and AOA-CNN-XGBoost Models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1631-1636). IEEE.
  134. Anuprathibha, T., Praveen, R. V. S., Sukumar, P., Suganthi, G., & Ravichandran, T. (2024, October). Enhancing Fake Review Detection: A Hierarchical Graph Attention Network Approach Using Text and Ratings. In 2024 Global Conference on Communications and Information Technologies (GCCIT) (pp. 1-5). IEEE.
  135. Shinkar, A. R., Joshi, D., Praveen, R. V. S., Rajesh, Y., & Singh, D. (2024, December). Intelligent solar energy harvesting and management in IoT nodes using deep self-organizing maps. In 2024 International Conference on Emerging Research in Computational Science (ICERCS) (pp. 1-6). IEEE.
  136. Praveen, R. V. S., Hemavathi, U., Sathya, R., Siddiq, A. A., Sanjay, M. G., & Gowdish, S. (2024, October). AI Powered Plant Identification and Plant Disease Classification System. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 1610-1616). IEEE.
  137. Dhivya, R., Sagili, S. R., Praveen, R. V. S., VamsiLala, P. N. V., Sangeetha, A., & Suchithra, B. (2024, December). Predictive Modelling of Osteoporosis using Machine Learning Algorithms. In 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS) (pp. 997-1002). IEEE.
  138. Kemmannu, P. K., Praveen, R. V. S., Saravanan, B., Amshavalli, M., & Banupriya, V. (2024, December). Enhancing Sustainable Agriculture Through Smart Architecture: An Adaptive Neuro-Fuzzy Inference System with XGBoost Model. In 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA) (pp. 724-730). IEEE.
  139. Praveen, R. V. S. (2024). Data Engineering for Modern Applications. Addition Publishing House.

Abstract

Accurate classification of high-resolution satellite imagery is crucial for environmental monitoring, urban development, and natural resource management. This study introduces an improved U-Net architecture enhanced with a Spatial Pyramid Pooling (SPP) layer to achieve precise pixel-level semantic segmentation. Traditional U-Net models often struggle with preserving fine object boundaries due to pooling operations. By integrating SPP, which captures multi-scale spatial context, our model maintains critical boundary information and improves the distinction between similar land cover types. Experiments conducted on two benchmark datasets show that the enhanced model outperforms existing deep learning approaches in terms of segmentation accuracy and edge preservation.Satellite Imagery Land Classification

Semantic Segmentation of Satellite Imagery for Land Cover Classification

Introduction

The demand for up-to-date and accurate earth surface information is rising due to its vital role in global, regional, and local planning. Applications range from natural resource management to land-use monitoring and urban development. Satellite image classification plays a key role in geographic information systems (GIS) used for environmental studies, policy-making, and infrastructure development.Satellite Imagery Land Classification

Over the past decade, numerous techniques have been developed to extract land use information from satellite images (Gong et al., 2015). Among them, Deep Learning has emerged as a powerful tool in image analysis due to its ability to handle complex data and deliver high accuracy. However, applying deep learning to satellite image segmentation remains a challenge. Generating pixel-level ground truth data is labor-intensive and time-consuming. Moreover, satellite imagery often shows high variability within classes and minimal contrast between different classes, complicating accurate segmentation.

Semantic segmentation in satellite imagery involves classifying each pixel into predefined categories such as roads, buildings, vegetation, water bodies, or unlabeled regions. This fine-grained classification is essential for tasks like land cover mapping, urban planning, and environmental assessment. However, traditional models often struggle to maintain accuracy in high-resolution images due to detail loss during pooling.

To address these challenges, this paper proposes an enhanced U-Net model incorporating a Spatial Pyramid Pooling (SPP) layer. This modification improves the model’s ability to capture and retain spatial context at multiple scales, leading to more accurate and consistent classification, especially along object boundaries.

Download Here

Published In