Volume no :
|
Issue no :
Article Type :
Author :
Mr. Prasantha Kumar sahoo, M. Sai Venkata Ramana, S. Vasisht Iyenger , B. Eshanth
Published Date :
Publisher :
Page No: 1 - 13
Abstract : The project aims to address the critical need for a robust explosion risk assessment tool in the oil and gas industry, particularly in oil and gas refinery environments where safety is paramount. Traditional methods of threat assessment are often manual, subjective, and limited in their capacity to provide real-time insights, which poses significant challenges for industry professionals in managing potential hazards. Our project leverages real-time weather data and machine learning algorithms to develop an advanced web application designed to identify and assess threat zones within oil and gas refineries. By utilizing refinery-specific datasets, real-time weather parameters, and machine learning models, the application enables users to upload or access refinery data, select industry-specific details, and receive accurate risk predictions along with stability class assessments. The application integrates the OpenWeatherMap API to provide up-to-date weather information, while a Random Forest classifier used for gas classification and some other parameters are calculated and trained on relevant features such as wind speed, cloud cover, and insolation levels to predict explosion risks. Designed with an intuitive, user-friendly interface, this tool will be invaluable for safety engineers, refinery managers, and environmental professionals, facilitating proactive risk management and informed decision-making. By addressing limitations in current risk assessment methods—such as limited access to real-time environmental data, variable risk levels, and lack of predictive analytics—our project aims to provide a comprehensive, data-driven solution for managing safety and mitigating risks in high-stakes industrial environments.
Keyword Gas Classification, OpenWeatherMap API, Insolation Calculation, Predictive Analytics, Explosion Efficiency, Risk Prediction.
Reference:
  1. Murthy, G., and R. Shankar. “Composite Fermions.” (1998): 254-306.
  2. Mahalakshmi, A., Goud, N. S., & Murthy, G. V. (2018). A survey on phishing and it’s detection techniques based on support vector method (Svm) and software defined networking (sdn). International Journal of Engineering and Advanced Technology8(2), 498-503.
  3. Murthy, G., & Shankar, R. (2002). Semiconductors II-Surfaces, interfaces, microstructures, and related topics-Hamiltonian theory of the fractional quantum Hall effect: Effect of Landau level mixing. Physical Review-Section B-Condensed Matter65(24), 245309-245309.
  4. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2014). Optimal placement of DG in distribution system to mitigate power quality disturbances. International Journal of Electrical and Computer Engineering7(2), 266-271.
  5. Muraleedharan, K., Raghavan, R., Murthy, G. V. K., Murthy, V. S. S., Swamy, K. G., & Prasanna, T. (1989). An investigation on the outbreaks of pox in buffaloes in Karnataka.
  6. Murthy, G. V. K., Sivanagaraju, S., Satyanarayana, S., & Rao, B. H. (2012). Reliability improvement of radial distribution system with distributed generation. International Journal of Engineering Science and Technology (IJEST)4(09), 4003-4011.
  7. Gowda, B. M. V., Murthy, G. V. K., Upadhye, A. S., & Raghavan, R. (1996). Serotypes of Escherichia coli from pathological conditions in poultry and their antibiogram.
  8. Balasubbareddy, M., Murthy, G. V. K., & Kumar, K. S. (2021). Performance evaluation of different structures of power system stabilizers. International Journal of Electrical and Computer Engineering (IJECE)11(1), 114-123.
  9. Murthy, G. V. K., & Sivanagaraju, S. (2012). S. Satyana rayana, B. Hanumantha Rao,” Voltage stability index of radial distribution networks with distributed generation,”.  J. Electr. Eng5(6), 791-803.
  10. Anuja, P. S., Kiran, V. U., Kalavathi, C., Murthy, G. N., & Kumari, G. S. (2015). Design of elliptical patch antenna with single & double U-slot for wireless applications: a comparative approach. International Journal of Computer Science and Network Security (IJCSNS)15(2), 60.
  11. Siva Prasad, B. V. V., Mandapati, S., Kumar Ramasamy, L., Boddu, R., Reddy, P., & Suresh Kumar, B. (2023). Ensemble-based cryptography for soldiers’ health monitoring using mobile ad hoc networks. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije64(3), 658-671.
  12. Siva Prasad, B. V. V., Sucharitha, G., Venkatesan, K. G. S., Patnala, T. R., Murari, T., & Karanam, S. R. (2022). Optimisation of the execution time using hadoop-based parallel machine learning on computing clusters. In Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021(pp. 233-244). Singapore: Springer Nature Singapore.
  13. Prasad, B. V., & Ali, S. S. (2017). Software–defined networking based secure rout-ing in mobile ad hoc network. International Journal of Engineering & Technology7(1.2), 229.
  14. Elechi, P., & Onu, K. E. (2022). Unmanned Aerial Vehicle Cellular Communication Operating in Non-terrestrial Networks. In Unmanned Aerial Vehicle Cellular Communications(pp. 225-251). Cham: Springer International Publishing.
  15. Prasad, B. V. V. S., Mandapati, S., Haritha, B., & Begum, M. J. (2020, August). Enhanced Security for the authentication of Digital Signature from the key generated by the CSTRNG method. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT)(pp. 1088-1093). IEEE.
  16. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Veeneetha, S. V., Srivalli, N., … & Sahitya, D. (2022, November). Prediction of Flight-fare using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP)(pp. 134-138). IEEE.
  17. Alapati, N., Prasad, B. V. V. S., Sharma, A., Kumari, G. R. P., Bhargavi, P. J., Alekhya, A., … & Nandini, K. (2022, November). Cardiovascular Disease Prediction using machine learning. In 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP)(pp. 60-66). IEEE.
  18. Mukiri, R. R., Kumar, B. S., & Prasad, B. V. V. (2019, February). Effective Data Collaborative Strain Using RecTree Algorithm. In Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.
  19. Rao, B. T., Prasad, B. V. V. S., & Peram, S. R. (2019). Elegant Energy Competent Lighting in Green Buildings Based on Energetic Power Control Using IoT Design. In Smart Intelligent Computing and Applications: Proceedings of the Second International Conference on SCI 2018, Volume 1(pp. 247-257). Springer Singapore.
  20. Someswar, G. M., & Prasad, B. V. V. S. (2017, October). USVGM protocol with two layer architecture for efficient network management in MANET’S. In 2017 2nd International Conference on Communication and Electronics Systems (ICCES)(pp. 738-741). IEEE.
  21. Hnamte, V., & Balram, G. (2022). Implementation of Naive Bayes Classifier for Reducing DDoS Attacks in IoT Networks. Journal of Algebraic Statistics13(2), 2749-2757.
  22. Balram, G., Poornachandrarao, N., Ganesh, D., Nagesh, B., Basi, R. A., & Kumar, M. S. (2024, September). Application of Machine Learning Techniques for Heavy Rainfall Prediction using Satellite Data. In 2024 5th International Conference on Smart Electronics and Communication (ICOSEC)(pp. 1081-1087). IEEE.
  23. Subrahmanyam, V., Sagar, M., Balram, G., Ramana, J. V., Tejaswi, S., & Mohammad, H. P. (2024, May). An Efficient Reliable Data Communication For Unmanned Air Vehicles (UAV) Enabled Industry Internet of Things (IIoT). In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT)(pp. 1-4). IEEE.
  24. KATIKA, R., & BALRAM, G. (2013). Video Multicasting Framework for Extended Wireless Mesh Networks Environment. pp-427-434, IJSRET2(7).
  25. Prasad, P. S., & Rao, S. K. M. (2017). HIASA: Hybrid improved artificial bee colony and simulated annealing based attack detection algorithm in mobile ad-hoc networks (MANETs). Bonfring International Journal of Industrial Engineering and Management Science7(2), 01-12.
  26. Prasad, P. S., & Rao, S. K. M. (2017). A Survey on Performance Analysis of ManetsUnder Security Attacks. network6(7).
  27. Reddy, P. R. S., & Ravindranath, K. (2024). Enhancing Secure and Reliable Data Transfer through Robust Integrity. Journal of Electrical Systems20(1s), 900-910.
  28. REDDY, P. R. S., & RAVINDRANATH, K. (2022). A HYBRID VERIFIED RE-ENCRYPTION INVOLVED PROXY SERVER TO ORGANIZE THE GROUP DYNAMICS: SHARING AND REVOCATION. Journal of Theoretical and Applied Information Technology100(13).
  29. Reddy, P. R. S., Ram, V. S. S., Greshma, V., & Kumar, K. S. Prediction of Heart Healthiness.
  30. Reddy, P. R. S., Reddy, A. M., & Ujwala, B. IDENTITY PRESERVING IN DYNAMIC GROUPS FOR DATA SHARING AND AUDITING IN CLOUD.
  31. Madhuri, K., Viswanath, N. K., & Gayatri, P. U. (2016, November). Performance evaluation of AODV under Black hole attack in MANET using NS2. In 2016 international conference on ICT in Business Industry & Government (ICTBIG)(pp. 1-3). IEEE.
  32. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors32, 101054.
  33. Rao, N. R., Kovoor, M., Kishor Kumar, G. N., & Parameswari, D. V. L. (2023). Security and privacy in smart farming: challenges and opportunities. International Journal on Recent and Innovation Trends in Computing and Communication11(7 S).
  34. Madhuri, K. (2023). Security Threats and Detection Mechanisms in Machine Learning. Handbook of Artificial Intelligence, 255.
  35. DASTAGIRAIAH, D. (2024). A SYSTEM FOR ANALYSING CALL DROP DYNAMICS IN THE TELECOM INDUSTRY USING MACHINE LEARNING AND FEATURE SELECTION. Journal of Theoretical and Applied Information Technology102(22).
  36. Sukhavasi, V., Kulkarni, S., Raghavendran, V., Dastagiraiah, C., Apat, S. K., & Reddy, P. C. S. (2024). Malignancy Detection in Lung and Colon Histopathology Images by Transfer Learning with Class Selective Image Processing.
  37. Sudhakar, R. V., Dastagiraiah, C., Pattem, S., & Bhukya, S. (2024). Multi-Objective Reinforcement Learning Based Algorithm for Dynamic Workflow Scheduling in Cloud Computing. Indonesian Journal of Electrical Engineering and Informatics (IJEEI)12(3), 640-649.
  38. PushpaRani, K., Roja, G., Anusha, R., Dastagiraiah, C., Srilatha, B., & Manjusha, B. (2024, June). Geological Information Extraction from Satellite Imagery Using Deep Learning. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT)(pp. 1-7). IEEE.
  39. Sravan, K., Rao, L. G., Ramineni, K., Rachapalli, A., & Mohmmad, S. (2024). Analyze the Quality of Wine Based on Machine Learning Approach Check for updates. Data Science and Applications: Proceedings of ICDSA 2023, Volume 3820, 351.
  40. Chandhar, K., Ramineni, K., Ramakrishna, E., Ramana, T. V., Sandeep, A., & Kalyan, K. (2023, December). Enhancing Crop Yield Prediction in India: A Comparative Analysis of Machine Learning Models. In 2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON)(pp. 1-4). IEEE.
  41. Ramineni, K., Shankar, K., Shabana, Mahender, A., & Mohmmad, S. (2023, June). Detecting of Tree Cutting Sound in the Forest by Machine Learning Intelligence. In International Conference on Power Engineering and Intelligent Systems (PEIS)(pp. 303-314). Singapore: Springer Nature Singapore.
  42. Ashok, J., RAMINENI, K., & Rajan, E. G. (2010). BEYOND INFORMATION RETRIEVAL: A SURVEY. Journal of Theoretical & Applied Information Technology15.
  43. Sekhar, P. R., & Sujatha, B. (2020, July). A literature review on feature selection using evolutionary algorithms. In 2020 7th International Conference on Smart Structures and Systems (ICSSS)(pp. 1-8). IEEE.
  44. Sekhar, P. R., & Sujatha, B. (2023). Feature extraction and independent subset generation using genetic algorithm for improved classification.  J. Intell. Syst. Appl. Eng11, 503-512.
  45. Sekhar, P. R., & Goud, S. (2024). Collaborative Learning Techniques in Python Programming: A Case Study with CSE Students at Anurag University. Journal of Engineering Education Transformations38(Special Issue 1).
  46. Pesaramelli, R. S., & Sujatha, B. (2024, March). Principle correlated feature extraction using differential evolution for improved classification. In AIP Conference Proceedings(Vol. 2919, No. 1). AIP Publishing.
  47. Amarnadh, V., & Moparthi, N. R. (2023). Comprehensive review of different artificial intelligence-based methods for credit risk assessment in data science. Intelligent Decision Technologies17(4), 1265-1282.
  48. Amarnadh, V., & Moparthi, N. R. (2024). Prediction and assessment of credit risk using an adaptive Binarized spiking marine predators’ neural network in financial sector. Multimedia Tools and Applications83(16), 48761-48797.
  49. Amarnadh, V., & Moparthi, N. R. (2024). Range control-based class imbalance and optimized granular elastic net regression feature selection for credit risk assessment. Knowledge and Information Systems, 1-30.
  50. Amarnadh, V., & Akhila, M. (2019, May). RETRACTED: Big Data Analytics in E-Commerce User Interest Patterns. In Journal of Physics: Conference Series(Vol. 1228, No. 1, p. 012052). IOP Publishing.
  51. Selvan, M. Arul, and S. Miruna Joe Amali. “RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE.” (2024).
  52. Selvan, M. Arul. “Fire Management System For Indutrial Safety Applications.” (2023).
  53. Selvan, M. A. (2023). A PBL REPORT FOR CONTAINMENT ZONE ALERTING APPLICATION.
  54. Selvan, M. A. (2023). CONTAINMENT ZONE ALERTING APPLICATION A PROJECT BASED LEARNING REPORT.
  55. Selvan, M. A. (2021). Robust Cyber Attack Detection with Support Vector Machines: Tackling Both Established and Novel Threats.
  56. Selvan, M. A. (2023). INDUSTRY-SPECIFIC INTELLIGENT FIRE MANAGEMENT SYSTEM.
  57. Selvan, M. Arul. “PHISHING CONTENT CLASSIFICATION USING DYNAMIC WEIGHTING AND GENETIC RANKING OPTIMIZATION ALGORITHM.” (2024).
  58. Selvan, M. Arul. “Innovative Approaches in Cardiovascular Disease Prediction Through Machine Learning Optimization.” (2024).
  59. Lokhande, M., Kalpanadevi, D., Kate, V., Tripathi, A. K., & Bethapudi, P. (2023). Study of Computer Vision Applications in Healthcare Industry 4.0. In Healthcare Industry 4.0(pp. 151-166). CRC Press.
  60. Tripathi, A. K., Soni, R., & Verma, S. (2022). A review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of Mimosa pudica (linn.). Research Journal of Pharmacy and Technology15(9), 4293-4299.
  61. Mishra, S., Grewal, J., Wal, P., Bhivshet, G. U., Tripathi, A. K., & Walia, V. (2024). Therapeutic potential of vasopressin in the treatment of neurological disorders. Peptides174, 171166.
  62. Koliqi, R., Fathima, A., Tripathi, A. K., Sohi, N., Jesudasan, R. E., & Mahapatra, C. (2023). Innovative and Effective Machine Learning-Based Method to Analyze Alcoholic Brain Activity with Nonlinear Dynamics and Electroencephalography Data. SN Computer Science5(1), 113.
  63. Biswas, D., Sharma, G., Pandey, A., Tripathi, A. K., Pandey, A., & Sahu, P. & Chauhan, P.(2022). Magnetic Nanosphere: Promising approach to deliver the drug to the site of action. NeuroQuantology20(11), 4038.
  64. Tripathi, A. K., Diwedi, P., Kumar, N., Yadav, B. K., & Rathod, D. (2022). Trigonella Foenum Grecum L. Seed (Fenugreek) Pharmacological Effects on Cardiovascular and Stress Associated Disease. NeuroQuantology20(8), 4599.
  65. Tripathi, A. K., Dwivedi, C. P., Bansal, P., Pradhan, D. K., Parganiha, R., & Sahu, D. An Ethnoveterinary Important Plant Terminalia Arjuna. International Journal of Health Sciences, (II), 10601-10607.
  66. Babbar, R., Kaur, A., Vanya, Arora, R., Gupta, J. K., Wal, P., … & Behl, T. (2024). Impact of Bioactive Compounds in the Management of Various Inflammatory Diseases. Current Pharmaceutical Design, 30(24), 1880-1893.
  67. Sahu, A., Mishra, S., Wal, P., Debnath, B., Chouhan, D., Gunjal, S. D., & Tripathi, A. K. (2024). Novel Quinoline‐Based RAF Inhibitors: A Comprehensive Review on Synthesis, SAR and Molecular Docking Studies. ChemistrySelect9(23), e202400347.
  68. Vaishnav, Y., Banjare, L., Verma, S., Sharma, G., Biswas, D., Tripathi, A., … & Manjunath, K. (2022). Computational Method on Hydroxychloroquine and Azithromycin for SARS-CoV-2: Binding Affinity Studies. Research Journal of Pharmacy and Technology15(12), 5467-5472.
  69. Ramya, S., Devi, R. S., Pandian, P. S., Suguna, G., Suganya, R., & Manimozhi, N. (2023). Analyzing Big Data challenges and security issues in data privacy. International Research Journal of Modernization in Engineering Technology and Science5(2023), 421-428.
  70. Pandian, P. S., & Srinivasan, S. (2016). A Unified Model for Preprocessing and Clustering Technique for Web Usage Mining. Journal of Multiple-Valued Logic & Soft Computing26.
  71. Thamma, S. R. T. S. R. (2025). Transforming E-Commerce with Pragmatic Advertising Using Machine Learning Techniques.
  72. Thamma, S. R. T. S. R. (2024). Optimization of Generative AI Costs in Multi-Agent and Multi-Cloud Systems.
  73. Thamma, S. R. T. S. R. (2024). Revolutionizing Healthcare: Spatial Computing Meets Generative AI.
  74. Thamma, S. R. T. S. R. (2024). Cardiovascular image analysis: AI can analyze heart images to assess cardiovascular health and identify potential risks.
  75. Thamma, S. R. T. S. R. (2024). Generative AI in Graph-Based Spatial Computing: Techniques and Use Cases.
  76. NAVANEETHA, N., & KALYANI, S. (2012). Efficient Association Rule Mining using Indexing Support.
  77. Thirumoorthi, P., Deepika, S., & Yadaiah, N. (2014, March). Solar energy based dynamic sag compensator. In 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE)(pp. 1-6). IEEE.
  78. Nair, R., Zafrullah, S. N., Vinayasree, P., Singh, P., Zahra, M. M. A., Sharma, T., & Ahmadi, F. (2022). Blockchain‐Based Decentralized Cloud Solutions for Data Transfer. Computational Intelligence and Neuroscience2022(1), 8209854.
  79. Vinayasree, P., & Reddy, A. M. (2023). Blockchain-Enabled Hyperledger Fabric to Secure Data Transfer Mechanism for Medical Cyber-Physical System: Overview, Issues, and Challenges. EAI Endorsed Transactions on Pervasive Health and Technology9.
  80. Vinayasree, P., & Reddy, A. M. (2025). A Reliable and Secure Permissioned Blockchain‐Assisted Data Transfer Mechanism in Healthcare‐Based Cyber‐Physical Systems. Concurrency and Computation: Practice and Experience37(3), e8378.
  81. VINAYASREE¹, P., & REDDY, A. M. (2024). A SCALABLE AND SECURE BLOCKCHAIN-BASED HEALTHCARE SYSTEM: OPTIMIZING PERFORMANCE, SECURITY, AND PRIVACY WITH ADAPTIVE TECHNOLOGIES. Journal of Theoretical and Applied Information Technology102(22).
  82. Sahoo, P. K., & Jeripothula, P. (2020). Heart failure prediction using machine learning techniques. Available at SSRN 3759562.
  83. Sahoo, P. K., Chottray, R. K., & Pattnaiak, S. (2012). Research issues on windows event log. International Journal of Computer Applications41(19).
  84. Sahoo, P. K. (2018, March). Data mining a way to solve Phishing Attacks. In 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT)(pp. 1-5). IEEE.
  85. Sahoo, P. K., Chhotray, R. K., Jena, G., & Pattnaik, S. (2013). An implementation of elliptic curve cryptography.  J. Eng. Res. Technol.(IJERT)2(1), 2278-0181.
  86. Nagesh, O., Kumar, T., & Venkateswararao, V. (2017). A Survey on Security Aspects of Server Virtualization in Cloud Computing. International Journal of Electrical & Computer Engineering (2088-8708)7(3).
  87. Budaraju, R. R., & Nagesh, O. S. (2023, June). Multi-Level Image Thresholding Using Improvised Cuckoo Search Optimization Algorithm. In 2023 3rd International Conference on Intelligent Technologies (CONIT)(pp. 1-7). IEEE.
  88. Nagesh, O. S., Budaraju, R. R., Kulkarni, S. S., Vinay, M., Ajibade, S. S. M., Chopra, M., … & Kaliyaperumal, K. (2024). Boosting enabled efficient machine learning technique for accurate prediction of crop yield towards precision agriculture. Discover Sustainability5(1), 78.
  89. Jyothi, A., & Indira, B. (2018). A Two Way Validation Framework for Cloud Storage Security. International Journal of Engineering & Technology7(2.20), 236-242.
  90. Rekha, S. B., & Rao, M. V. (2017, September). Methodical activity recognition and monitoring of a person through smart phone and wireless sensors. In 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)(pp. 1456-1459). IEEE.
  91. Sangisetti, B. R., Pabboju, S., & Racha, S. (2019, June). Smart call forwarding and conditional signal monitoring in duos mobile. In Proceedings of the Third International Conference on Advanced Informatics for Computing Research(pp. 1-11).
  92. Sangisetti, B. R., & Pabboju, S. (2021). Analysis on human activity recognition using machine learning algorithm and personal activity correlation. Psychol Educ J58(2), 5754-5760.
  93. Kumar, T. V. (2018). Project Risk Management System Development Based on Industry 4.0 Technology and its Practical Implications.
  94. Tambi, V. K., & Singh, N. (2015). Potential Evaluation of REST Web Service Descriptions for Graph-Based Service Discovery with a Hypermedia Focus.
  95. Kumar, T. V. (2024). A Comparison of SQL and NO-SQL Database Management Systems for Unstructured Data.
  96. Kumar, T. V. (2024). A Comprehensive Empirical Study Determining Practitioners’ Views on Docker Development Difficulties: Stack Overflow Analysis.
  97. Kumar, T. V. (2024). Developments and Uses of Generative Artificial Intelligence and Present Experimental Data on the Impact on Productivity Applying Artificial Intelligence that is Generative.
  98. Kumar, T. V. (2024). A New Framework and Performance Assessment Method for Distributed Deep Neural NetworkBased Middleware for Cyberattack Detection in the Smart IoT Ecosystem.
  99. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
  100. Sharma, S., & Dutta, N. (2024). Examining ChatGPT’s and Other Models’ Potential to Improve the Security Environment using Generative AI for Cybersecurity.
  101. Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
  102. Arora, P., & Bhardwaj, S. Mitigating the Security Issues and Challenges in the Internet of Things (IOT) Framework for Enhanced Security.
  103. Sakshi, S. (2024). A Large-Scale Empirical Study Identifying Practitioners’ Perspectives on Challenges in Docker Development: Analysis using Stack Overflow.
  104. Sakshi, S. (2023). Advancements and Applications of Generative Artificial Intelligence and show the Experimental Evidence on the Productivity Effects using Generative Artificial Intelligence.
  105. Sakshi, S. (2023). Assessment of Web Services based on SOAP and REST Principles using Different Metrics for Mobile Environment and Multimedia Conference.
  106. Sakshi, S. (2022). Design and Implementation of a Pattern-based J2EE Application Development Environment.
  107. Sharma, S., & Dutta, N. (2018). Development of New Smart City Applications using Blockchain Technology and Cybersecurity Utilisation. Development, 7(11).
  108. Sharma, S., & Dutta, N. (2017). Development of Attractive Protection through Cyberattack Moderation and Traffic Impact Analysis for Connected Automated Vehicles. Development, 4(2).
  109. Sharma, S., & Dutta, N. (2015). Evaluation of REST Web Service Descriptions for Graph-based Service Discovery with a Hypermedia Focus. Evaluation, 2(5).
  110. Sharma, S., & Dutta, N. (2024). Examining ChatGPT’s and Other Models’ Potential to Improve the Security Environment using Generative AI for Cybersecurity.
  111. Sharma, S., & Dutta, N. (2015). Cybersecurity Vulnerability Management using Novel Artificial Intelligence and Machine Learning Techniques. Sakshi, S. (2023). Development of a Project Risk Management System based on Industry 4.0 Technology and its Practical Implications.
  112. Sharma, S., & Dutta, N. (2017). Classification and Feature Extraction in Artificial Intelligence-based Threat Detection using Analysing Methods.
  113. Sharma, S., & Dutta, N. (2016). Analysing Anomaly Process Detection using Classification Methods and Negative Selection Algorithms.
  114. Sharma, S., & Dutta, N. (2015). Distributed DNN-based Middleware for Cyberattack Detection in the Smart IOT Ecosystem: A Novel Framework and Performance Evaluation Technique.
  115. Bhat, S. (2015). Technology for Chemical Industry Mixing and Processing. Technology, 2(2).
  116. Bhat, S. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions.
  117. Bhat, S. (2020). Enhancing Data Centre Energy Efficiency with Modelling and Optimisation of End-To-End Cooling.
  118. Bhat, S. (2016). Improving Data Centre Energy Efficiency with End-To-End Cooling Modelling and Optimisation.
  119. Bhat, S. (2015). Deep Reinforcement Learning for Energy-Saving Thermal Comfort Management in Intelligent Structures.
  120. Bhat, S. (2015). Design and Function of a Gas Turbine Range Extender for Hybrid Vehicles.
  121. Bhat, S. (2023). Discovering the Attractiveness of Hydrogen-Fuelled Gas Turbines in Future Energy Systems.
  122. Bhat, S. (2019). Data Centre Cooling Technology’s Effect on Turbo-Mode Efficiency.
  123. Bhat, S. (2018). The Impact of Data Centre Cooling Technology on Turbo-Mode Efficiency.
  124. Archana, B., & Sreedaran, S. (2023). Synthesis, characterization, DNA binding and cleavage studies, in-vitro antimicrobial, cytotoxicity assay of new manganese (III) complexes of N-functionalized macrocyclic cyclam based Schiff base ligands. Polyhedron, 231, 116269.
  125. Archana, B., & Sreedaran, S. (2022). New cyclam based Zn (II) complexes: effect of flexibility and para substitution on DNA binding, in vitro cytotoxic studies and antimicrobial activities. Journal of Chemical Sciences, 134(4), 102.
  126. Archana, B., & Sreedaran, S. (2021). POTENTIALLY ACTIVE TRANSITION METAL COMPLEXES SYNTHESIZED AS SELECTIVE DNA BINDING AND ANTIMICROBIAL AGENTS. European Journal of Molecular and Clinical Medicine, 8(1), 1962-1971.
  127. Rasappan, A. S., Palanisamy, R., Thangamuthu, V., Dharmalingam, V. P., Natarajan, M., Archana, B., … & Kim, J. (2024). Battery-type WS2 decorated WO3 nanorods for high-performance supercapacitors. Materials Letters, 357, 135640.
  128. Arora, P., & Bhardwaj, S. (2017). Investigation and Evaluation of Strategic Approaches Critically before Approving Cloud Computing Service Frameworks.
  129. Arora, P., & Bhardwaj, S. (2017). Enhancing Security using Knowledge Discovery and Data Mining Methods in Cloud Computing.
  130. Arora, P., & Bhardwaj, S. (2017). Combining Internet of Things and Wireless Sensor Networks: A Security-based and Hierarchical Approach.
  131. Arora, P., & Bhardwaj, S. (2019). Safe and Dependable Intrusion Detection Method Designs Created with Artificial Intelligence Techniques. machine learning, 8(7).
  132. Arora, P., & Bhardwaj, S. (2017). A Very Safe and Effective Way to Protect Privacy in Cloud Data Storage Configurations.
  133. Arora, P., & Bhardwaj, S. (2019). The Suitability of Different Cybersecurity Services to Stop Smart Home Attacks.
  134. Arora, P., & Bhardwaj, S. (2020). Research on Cybersecurity Issues and Solutions for Intelligent Transportation Systems.

Arora, P., & Bhardwaj, S. (2021). Methods for Threat and Risk Assessment and Mitigation to Improve Security in the Automotive Sector. Methods, 8(2).